
COMPUTING SYSTEMS BASED ON ADAPTIVE RECONFIGURABLE ARCHITECTURES

Andrea Cazzaniga, Filippo Sironi, Davide B. Bartolini, Marco D. Santambrogio

Dipartimento di Elettronica e Informazione, Politecnico di Milano
{acazzaniga,sironi,bartolini,santambrogio}@elet.polimi.it

ABSTRACT

Imagine further a computing system that performs better ac-
cording to a user’s preferred goal the longer it runs an ap-
plication. Such an architecture will enable, for example, a
hand-held radio or a cell phone that can run cooler the longer
the connection time. Moreover, Systems on a Chip (SoC)
can draw various benefits, such as adaptability and efficient
acceleration of compute-intensive tasks from the inclusion
of reconfigurable hardware as a system component. Dy-
namic reconfiguration capabilities of current reconfigurable
devices create an additional dimension in the temporal do-
main. During the design space exploration phase, overheads
associated with reconfiguration and hardware/software in-
terfacing need to be evaluated carefully in order to harvest
the full potential of dynamic reconfiguration. Self-aware
computer systems will be capable of adapting their behavior
and resources thousands of times a second to automatically
find the best way to accomplish a given goal despite chang-
ing environmental conditions and demands. In this work we
present an attempt in presenting the key enabling technolo-
gies to realize such self-aware runtime system that can gain
benefits from the presented paradigm.

1. INTRODUCTION

Reconfiguration capabilities and hardware-software codesign
techniques are becoming just elements of a more complex
scenario. The need for a systematic approach to the design
of new architectures and systems enabling self-awareness
is motivated by some trends that have gained momentum
in the past few years. Research is pushing forward, look-
ing for complex heterogeneous, reconfigurable multi-core
architectures. In order to overcome the limits deriving by
the increasing complexity and the associated workload to
maintain such complex infrastructure, one possibility is to
adopt self-adaptive and autonomic computing systems [1].
A self-adaptive and autonomic computing system is a sys-
tem able to configure, heal, optimize and protect itself with-
out the need for human intervention. Different companies,
i.e., IBM [2, 3], Oracle [4], and Intel [5] have invested in
this research, creating several products characterized by a
self-adaptive behavior. However, a lot of work still needs

to be performed in defining effective self-adaptive and auto-
nomic architectures in the embedded system domain.

On one hand there is the increasing importance of non-
functional constraints: in the perceived value of a digital
system, features that are not completely reducible to the
functionalities are getting ever more important. Two famous
examples of such non-functional constraints are power con-
sumption and reliability, but there are many other potential
dimensions, that lie at the border of what can be called func-
tionality, that impact user experience of a digital system or
device; examples can be results accuracy, like in different
audio and video qualities for a multimedia device, or effi-
ciency in understanding human signals in interactions (as
already happens, for instance, in speech recognition soft-
ware)). Meeting such constraints (or optimizing the associ-
ated figures) is getting more and more difficult, mainly be-
cause of the exponential increase of environmental interac-
tions and conditions in which devices are required to oper-
ate.

On the other hand, devices structure evolution tends to-
wards forms of complexity characterized by the increase in
number and of complexness of interacting ”peer” elements,
at various levels (e.g.: cores on a multicore processor, con-
current programs in a multitask operating system, number
of threads within a single application). Meeting non func-
tional constraints requires, most of the times, a coordination
among all those elements, for any possible working condi-
tion. It is evident that statically foreseeing, at design time,
the actions that must be taken in order to maximize non-
functional constraint satisfaction for all the possible scenar-
ios is already way beyond feasibility. Think of the simplest
problem that control engineering faces since a long time:
controlling the temperature of a room to stay stable at a
given value, within acceptable bounds. Room temperature
can be determined or influenced by a plethora of different
factors: outside weather, windows being open or closed, the
presence of persons inside the room and so on. Knowing all
such factors in advance is of course impossible. The concep-
tual solution developed was the closed loop control: the sys-
tem reacts to deviations from the goal (differences between
the temperature set and that measured) with actions some-
how proportional to that distance (injecting thermal power

in the room).

The user of the control system just sets the goal, then the
system dynamically and automatically reacts, adapting itself
to the new conditions. This control task example can be used
as a metaphor for the motivations towards implementation
of the self-aware adaptive systems that are the focus of this
project: as the temperature controller exploits information
on its state and on the environment to pursue a goal that is
dependent on a set of factors non foreseeable at design time,
so should be able to do, on a much higher, behavioral level,
embedded systems.

2. CONTEXT DEFINITION

Resources such as quantities of transistors and memory, the
level of integration and the speed of components have in-
creased dramatically over the years. Even though the tech-
nologies have improved, we continue to apply outdated ap-
proaches to our use of these resources. Within this con-
text, imagine an interaction capability of digital systems by
which designers and users can specify their desired goals
rather than how to perform a task, along with constraints
in terms of an energy budget, time, or simply a preference
for an approximate answer over an exact answer. Imag-
ine further a computing chip that performs better accord-
ing to a user’s preferred goal the longer it runs an applica-
tion. Such an architecture will enable, for example, a hand-
held radio or a cell phone that can run cooler the longer
the connection time. Or, a system that can perform reliably
and continuously in a range of environments by tolerating
hard and transient failures through self healing. Self-aware
computer systems will be capable of adapting their behavior
and resources thousands of times a second to automatically
find the best way to accomplish a given goal despite chang-
ing environmental conditions and demands. Such a capa-
bility would benefit a broad spectrum of computer systems
from embedded systems to supercomputers and is particu-
larly useful for meeting power, performance, and resource-
metering challenges in mobile computing [6, 7], grid and
cloud computing [8, 9, 10], multicore computing [11, 12,
13], networks [14, 15], self-healing systems [16, 17, 18],
complex distributed Internet services [19, 20, 21], distributed
system [22], operating systems [23, 24, 25, 3, 26], and adap-
tive and dynamic compilation environments [27, 28].

3. RUNTIME SELF-AWARE SUPPORT

The operating system is in charge of choosing at runtime
between the set of possible implementations (a software one
or one of the available hardware implementations) accord-
ing to different criteria, such as the available area (set of re-
sources) on the FPGA, input data type and dimension, func-
tionalities already implemented and available as hardware

components. The runtime decision of the most suitable im-
plementation (software or reconfigurable hardware) due to
runtime conditions, allows this work to be considered as an
attempt to the define a self-aware computing system. The
operating system answers a request for a functionality by
choosing a runtime the best implementation. Best does not
mean the optimal solution but the one that can guarantee
the best performance considering all the runtime conditions
in which it has to be executed. Considering the scenario
where an hardware solution is chosen as the best implemen-
tation, the corresponding hardware module has to be loaded
by configuring the IP-Core on the FPGA and by creating a
communication channel between the module and the soft-
ware application in a transparent way. As a consequence,
the IP-Core becomes accessible from the userspace when
the control is returned to the user application. The online
adaptability of the overall system is implemented in the OS
by means of kernel modules implementing a closed control
loop, called Self-Aware Support in Figure 1, and an Adap-
tive library. The Self-Aware support kernel extension, lo-

Physical Architecture

Reconfigurable HWGPPs

Users demanding applications

O
pe

ra
tin

g
Sy

st
em

Kernelspace
Self-Aware Support

App1 App2 App3 AppN

Userspace

Adaptive Libraries

Fig. 1. The overview of a Self-Aware systems where the
operating system is in charge on managing the online adap-
tation of the applications and of the underline architecture.

cated between the userspace and the physical architecture,
performs the online adaptation of the system, providing a
common interface for software applications and hardware
developers. Each software application communicates with
the kernel using the API of the reconfiguration library, which
allows also the access to the hardware component that phys-
ically implements specific functionalities, once they have
been configured on the FPGA by the operating system.

4. EXPERIMENTAL RESULTS

We designed a self-aware implementation [29] of the GNU/Linux
operating system able to monitor itself to take autonomous
decisions on the best implementation for the demanded func-
tionalities. Each software application, also named process,
can issue one or more system calls in order to require a spe-
cific functionality, which may be available either as a classi-
cal software library, as an adaptive software, or as hardware

IP-Cores, or all of them. The operating system is in charge
of choosing among the software or the hardware implemen-
tation according to different criteria, such as the amount of
free area on the FPGA, or the dimension/number of data that
has to be processed.

The case study that we would like to present, belongs
to the cryptographic application domain. A cryptographic
reconfigurable architecture, implementing the Data Encryp-
tion Standard, has been designed to evaluate the performance
of the run-time decision of the best implementation for any
demanded task. The proposed case study, as shown in Fig-
ure 2, compares the performance of different implementa-
tions of the DES algorithm. The FPGA-based solutions have

!"!!!!!!#

!"$!!!!!#

%"!!!!!!#

%"$!!!!!#

&"!!!!!!#

&"$!!!!!#

'!# $!# (!#)!# *!# +!# %!!# &!!# ,!!# '!!# $!!# (!!#)!!# *!!# +!!# %!!!#

!
"#
$%
&
'
(
)*
+,

#
)-
./
)

0)12'$3.)

-./0#1#23#

-./0#1#453#

-./0#1#6453#

789:;#<=>;#6?@:#A#%"(!#/5B#

Fig. 2. Performance, in execution time, of the different im-
plementations of the DES algorithm.

been implemented on a Xilinx Virtex-II Pro working with
at 100MHz, while the data regarding the software solution
has been taken using an Intel Pentium Dual Core working at
1.60GHz with Linux (kernel 2.6.27). Three different FPGA
implementations have been implemented:

• SW: the DES algorithms has been executed in soft-
ware on the processor on the FPGA;

• RHW: the algorithm has been implemented as a re-
configurable component and finally;

• CRHW: the reconfigurable component was already con-
figured on the FPGA and ready to be used.

To optimize the execution time of a functionality, it is im-
portant for the operating system to be able to choose the
best implementation at runtime. Therefore, the OS has not
only to be able to understand on which scenario of the graph
shown in Figure 2 it is working, but to foresee the impact of
its decision on future calls. This will lead the OS to choose
the most appropriate implementation for the demanded task,
that may not lead to the best performance to that specific
call, but that may provide better performance to the next
ones.

In a scenario were we have enough area on the FPGA to
configure the HW implementation of the DES algorithm, for

a call on at least 3001 blocks, it is not always the best deci-
sion to go for the Intel Dual Core solution even if we do not
have the core algorithm already implemented as an HW IP-
Core. To explain this situation we can consider the scenario
characterized by two calls of the DES algorithm, the first one
on 1000 blocks and the second one on 400. As shown in Fig-
ure 2, the best implementation, when the HW IP-Core has
not been already configured on the FPGA, is the Dual Core
one. Within this scenario, where the system has no knowl-
edge of future calls (it is not aware of the fact that after the
1000 call it will serve a 400 one), the OS will always choose
the Dual Core implementation of the DES. This is the so-
lution already implemented in literature in different works
[30, 31]. On the contrary, considering the history of the pre-
vious calls, the performance information of all the possible
implementations, and the probability of receiving a certain
call, our system will choose the reconfigurable HW solution
(reconfiguration of the IP-Core and its execution) for the first
call, since it will be payback for each consecutive call on at
least 400 blocks. Table 1 presents the comparison between
the two different approaches.

5. REFERENCES

[1] P. Dini, “Internet, grid, self-adaptability and beyond: are we
ready?” Database and Expert Systems Applications, 2004.
Proceedings. 15th International Workshop on, pp. 782–788,
Aug.-3 Sept. 2004.

[2] IBM Inc., “IBM autonomic computing website,” 2009. [On-
line]. Available: http://www.research.ibm.com/autonomic/

[3] O. Krieger, M. Auslander, B. Rosenburg, R. W. J. W., Xeni-
dis, D. D. Silva, M. Ostrowski, J. Appavoo, M. Butrico,
M. Mergen, A. Waterland, and V. Uhlig, “K42: building a
complete operating system,” EuroSys ’06: Proceedings of the
1st ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2006, pp. 133–145, 2006.

[4] Oracle, “Automatic workload repository (awr) in ora-
cle database 10g,” Website, http://www.oracle-base.com/
articles/10g/AutomaticWorkloadRepository10g.php.

[5] Intel, “Reliability, availability, and serviceability for the
always-on enterprise. the enhanced ras capabilities of in-
tel processor-based server platforms simplify 24x7 busi-
ness solutions,” Online document, www.intel.com/assets/pdf/
whitepaper/ras.pdf, 2005.

[6] E. F. by the European Union’s 7th Framework Program,
“Exposing the features in ip version six protocols that can
be exploited extended for the purposes of designing/building
autonomic networks and services,” 2009. [Online]. Available:
http://www.efipsans.org

[7] M. M. Masters, “Exploring usability in mobile autonomic
networks,” in MobileHCI ’08: Proceedings of the 10th in-
ternational conference on Human computer interaction with

1Which is the point where the CRHW implementation outperforms the
Intel Dual Core one

Table 1. Different possible exe., for the same sequence of inputs
First call, #Blocks: 1000 Second call, #Blocks: 400 Overall Execution TIme (s)
Intel Core Duo: 0.179162 s Intel Core Duo: 0.052382 s 0.231544
RHW: 0.194679 s CRHW: 0.025710 s 0.220389

mobile devices and services. New York, NY, USA: ACM,
2008, pp. 549–550.

[8] J. Buisson, F. André, and J. L. Pazat, “Dynamic adaptation
for grid computing,” Lecture Notes in Computer Science. Ad-
vances in Grid Computing - EGC, pp. 538–547, 2005.

[9] S. S. Vadhiyar and J. J. Dongarra, “Self adaptivity in grid
computing,” Concurr. Comput. : Pract. Exper., vol. 17, no.
2-4, pp. 235–257, 2005.

[10] P. Reinecke and K. Wolter, “Adaptivity metric and perfor-
mance for restart strategies in web services reliable messag-
ing,” in WOSP ’08: Proceedings of the 7th International
Workshop on Software and Performance. ACM, 2008, pp.
201–212.

[11] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and
D. Tullsen, “Processor power reduction via single-isa het-
erogeneous multi-core architectures,” Computer Architecture
Letters, vol. 2, no. 1, pp. 2–2, January-December 2003.

[12] B. Sprunt, “Pentium 4 performance-monitoring features,”
IEEE Micro, vol. 22, no. 4, pp. 72–82, Jul/Aug 2002.

[13] R. Azimi, M. Stumm, and R. W. Wisniewski, “Online per-
formance analysis by statistical sampling of microprocessor
performance counters,” in ICS ’05: Proceedings of the 19th
Inter. Conf. on Supercomputing, 2005, pp. 101–110.

[14] HAGGLE, “A european union funded project in situated
and autonomic communications,” 2007. [Online]. Available:
http://www.haggleproject.org

[15] ANA, “Autonomic network architecture,” 2009. [Online].
Available: http://www.ana-project.org

[16] C. M. Garcia-Arellano, S. Lightstone, G. Lohman, V. Markl,
and A.Storm, “A self-managing relational database server:
Examples from IBM’s DB2 universal database for linux unix
and windows,” IEEE Transactions on Systems, Man and Cy-
bernetics, vol. 36, no. 3, pp. 365– 376, 2006.

[17] J. Appavoo, K. Hui, M. Stumm, R. W. Wisniewski, D. D.
Silva, O. Krieger, and C. A. N. Soules, “An infrastructure for
multiprocessor run-time adaptation,” in WOSS ’02: Proceed-
ings of the first Workshop on Self-healing Systems. New
York, NY, USA: ACM, 2002, pp. 3–8.

[18] D. Breitgand, M. Goldstein, E. Henis, O. Shehory, and
Y. Weinsberg, “Panacea towards a self-healing development
framework,” in Integrated Network Management. IEEE,
2007, pp. 169–178.

[19] E. U. F. P. CASCADAS, “Component-ware for au-
tonomic situation-aware communications, and dynam-
ically adaptable services,” 2009. [Online]. Available:
http://www.cascadas-project.org

[20] A. Fox, E. Kiciman, and D. Patterson, “Combining statistical
monitoring and predictable recovery for self-management,”
in WOSS ’04: Proceedings of the 1st ACM SIGSOFT work-

shop on Self-managed systems. New York, NY, USA: ACM,
2004, pp. 49–53.

[21] J. Strassner, S.-S. Kim, and J. W.-K. Hong, “The design of an
autonomic communication element to manage future internet
services,” in APNOMS, ser. Lecture Notes in Computer Sci-
ence, C. S. Hong, T. Tonouchi, Y. Ma, and C.-S. Chao, Eds.,
vol. 5787. Springer, 2009, pp. 122–132.

[22] A. Quiroz, N. Gnanasambandam, M. Parashar, and
N. Sharma, “Robust clustering analysis for the management
of self-monitoring distributed systems,” Cluster Computing,
vol. 12, no. 1, pp. 73–85, 2009.

[23] J. Vetter and P. Worley, “Asserting performance expecta-
tions,” in Supercomputing, ACM/IEEE 2002 Conference,
Nov. 2002, pp. 33–33.

[24] M. Caporuscio, A. Di Marco, and P. Inverardi, “Run-time per-
formance management of the siena publish/subscribe middle-
ware,” in WOSP ’05: Proc. of the 5th Inter. Work. on Software
and performance, 2005, pp. 65–74.

[25] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wis-
niewski, “Performance and environment monitoring for con-
tinuous program optimization,” IBM J. Res. Dev., vol. 50, no.
2/3, pp. 239–248, 2006.

[26] S. Oberthür, C. Böke, and B. Griese, “Dynamic online re-
configuration for customizable and self-optimizing operating
systems,” in EMSOFT ’05: Proceedings of the 5th ACM in-
ternational conference on Embedded software. New York,
NY, USA: ACM, 2005, pp. 335–338.

[27] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Am-
ato, and L. Rauchwerger, “A framework for adaptive algo-
rithm selection in STAPL,” in PPoPP ’05: Proceedings of
the 10th ACM SIGPLAN symposium on Principles and Prac-
tice of Parallel Programming. New York, NY, USA: ACM,
2005, pp. 277–288.

[28] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe, “PetaBricks: A language
and compiler for algorithmic choice,” in Conf. on Program-
ming Language Design and Implementation, Jun 2009.

[29] M. D. Santambrogio, “From reconfigurable architectures to
self-adaptive autonomic systems,” IEEE International Con-
ference on Computational Science and Engineering, pp. 926
– 931, 2009.

[30] M. D. Santambrogio, I. Beretta, V. Rana, and D. Sciuto,
“On-line task management for a reconfigurable cryptographic
architecture,” in IEEE International Symposium on Parallel
and Distributed Processing, 2009. IPDPS 2009, May 2009.

[31] V. Sima and K. Bertels, “Runtime decision of hardware or
software execution on a heterogeneous reconfigurable plat-
form,” in IEEE International Symposium on Parallel and Dis-
tributed Processing, May 2009.

