
DESIGN TOOLS FOR SELF-AWARE SYSTEMS ON FPGAS

Dirk Koch, Christian Beckhoff, Alexander Wold, and Jim Torresen

Department of Informatics,
University of Oslo (Norway)

email: {koch, jimtoer}@ifi.uio.no

ABSTRACT

To fully exploit the capabilities of run-time reconfigurable
FPGAs in self-aware systems, design tools are required that
exceed the capabilities of present vendor design tools. Such
tools must allow the implementation of scaleable reconfig-
urable systems with various different partial modules that
might be loaded to different positions of the device at run-
time. This comprises several complex tasks, including floor-
planning, communication architecture synthesis, physical con-
straints generation, and the physical implementation all the
way down to the final bitstream generation. In this paper, we
present how our GOAHEAD framework helps in implement-
ing self-aware systems with a minimum of user interaction.

1. INTRODUCTION

Partial reconfiguration of FPGAs is a key technology in the
implementation of self-aware systems that are capable of
adapting behavior and structure of hardware at run-time.
For example, reconfigurable modules might be relocated to
compensate for device defects or a variable number of ac-
celerator modules might be instantiated in order to adapt to
varying compute demands. In general, such self-adaptations
require that various modules (each with different resource
requirements) can be placed freely and multiple times on
the fabric while being able to communicate with the dynam-
ically placed modules.

However, from the FPGA vendor side, there is only weak
support for implementing such flexible self-adaptive sys-
tems. For example, following the latest partial design flow
from Xilinx [1] still does not permit relocation of modules
on the FPGA fabric. This means that in a scenario with,
for example, 10 possible module placement positions and
5 different modules, it requires 50 individual place & route
steps for the modules and consequently 50 partial configu-
ration bitstreams. Moreover, all these physical implementa-
tion steps have to be carried out again after changes in the
static part of the system. Note that these restrictions also
apply for the PR tools from Altera [2].

A further drawback of the vendor tools is that they do not
permit sharing a reconfigurable region by multiple modules

at the same time and only one module can be placed ex-
clusively into a reconfigurable region. For instance, a large
module cannot be replaced by multiple smaller ones. Conse-
quently, the vendor tools neither scale with the complexity
required for implementing advanced self-adaptive systems
nor do they allow for the implementation of systems that
exploit the full flexibility available in an FPGA.

Besides the vendor tools from Xilinx, there exist a few
academic approaches to implementing reconfigurable sys-
tems on FPGAs. For example, OpenPR [3] allows for the
implementation of relocatable modules resulting in a more
scalable flow than what is available from the FPGA ven-
dors. However, having multiple modules in a reconfigurable
region or the crossing of static routing through a reconfig-
urable regions is not supported. The tool ReCoBus-Builder [4]
includes synthesis capabilities of communication architec-
tures required to integrate multiple modules simultaneously
in a reconfigurable region, but the tool only supports older
devices. The following sections introduce how our new tool
GOAHEAD [5], can be used for building self-aware systems.

2. IMPLEMENTING SELF-AWARE SYSTEMS
WITH GOAHEAD

Implementing self-aware systems using partial reconfigu-
ration on FPGAs involves several complex tasks and deep
knowledge about self-aware strategies, as well as knowl-
edge on how to build and manage reconfigurable systems.
The tool GOAHEAD [5] automates and assists in the latter
issues. GOAHEAD provides the following features:

• Floorplanning in manual and automatic mode. This
is the process of defining reconfigurable regions on
an FPGA for hosting dynamically loadable modules.

• Communication architecture synthesis for island style
and slot-based reconfigurable systems. This is the
process of binding signals for the communication with
the partial modules to physical wires on the fabric.

• Physical constraints generation for place and route.

• Design rule checking and verification. GOAHEAD
can create netlists for simulation, timing verification,



Fig. 1. Audio and video module with stitchable interfaces.

and full bitstream generation of any combination of
modules that might occur during system operation.

• Bitstream assembly of the static and all partial module
configuration bitstreams.

The communication architecture synthesis can create mod-
ule interfaces that allow stitching various modules together
in an arbitrary manner. It is also possible to route signals
through the region of a partial module (e.g., for crossing
the reconfigurable region), while still being able to relo-
cate modules to different positions on the FPGA (as long
as the resource footprint matches). See [5] for more details
on module relocation.

Figure 1 shows an example of two stitchable modules.
While the left module accesses the video stream while rout-
ing through the audio stream, respectively, the right mod-
ule accesses the audio stream and routes through the video
stream. Both modules provide connections that permit direct
connections between adjacently placed modules. However,
a system might provide route through modules in order to
bridge a gap between two placed modules. The compati-
bility of the interfaces is ensured by constraining signals to
matching wires on both sides of the module.

The order of stitching the modules is reversible, as long
as the underlying resource footprint matches. Because the
modules work on different data (i.e., audio and video data),
it is possible to stitch the audio module either left or right be-
side the video module while still providing exactly the same
functionality. In the case of multiple modules working on
the same data stream, two modes are supported: 1) in multi-
cast mode the input stream is tapped and sent directly to the
next module which permits an arbitrary placement order of
modules along a stream, while 2) in read-modify-write mode
the input data is processed and the result is streamed to adja-
cent modules. In the later case, the data dependency results

in an placement order along the data stream that has to be
followed.

For high performance, the communication can be pipe-
lined and clock rates of more than 300 MHz are possible on
Xilinx Virtex-6 FPGAs. Note that GOAHEAD can include
pipeline registers into route through channels that permit,
for example, to partially load a reconfigurable video module
without interfering the audio stream or vice versa. This per-
mits stitching together a large number of modules without
dropping the throughput on the channels.

As Opposed to the partial design flows from the FPGA
vendors Xilinx and Altera, GOAHEAD does not need con-
nection primitives on the signal paths from or to a partial
module (called proxy logic [1] by Xilinx). This removes in
particular for small modules (e.g., instruction set extensions
for CPUs) the logic overhead and the additional latency of
the connection primitives. As shown in the right zoomed
box in Figure 1, input signals are routed directly to the mod-
ule. In the GOAHEAD design flow, connection primitives are
placed temporarily outside the module. However, by cutting
out the module, when generating the partial configuration
bitsream, the connection primitive is completely removed
from the system.

3. CONCLUSIONS

Our novel tool GOAHEAD provides distinguished features
for implementing reconfigurable systems that are not avail-
able in the PR tools from the FPGA vendors. The tool is
available from [6]. We spent much energy on making it easy
to use. Through our effort, we hope to stimulate research on
self-aware and self-adaptive systems using FPGAs.

Acknowledgment
This work is supported by the Norwegian Research Council founded
project Context Switching Reconfigurable Hardware for Communi-
cation Systems (COSRECOS) [6], under grant 191156V30.

4. REFERENCES

[1] Xilinx Inc., “Partial Reconfiguration User Guide,” 2011, rel 13.2.

[2] Mark Bourgeault, “Alteras Partial Reconfiguration Flow,”
2011, available online: http://www.eecg.utoronto.ca/-
˜jayar/FPGAseminar/FPGA Bourgeault June23 2011.pdf.

[3] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood,
“OpenPR: An Open-Source Partial-Reconfiguration Toolkit for Xilinx
FPGAs,” in Proc. of the IEEE Int. Symp. on Parallel and Distr. Pro-
cessing Works. (IPDPSW), 2011, pp. 228–235.

[4] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder– a Novel Tool
and Technique to Build Statically and Dynamically Reconfigurable
Systems for FPGAs,” in Proc. of Int. Conf. on Field-Progr. Logic and
Applications (FPL), Sept. 2008, pp. 119–124.

[5] D. Koch, C. Beckhoff, and T. Jim, “GoAhead: A Partial Reconfigu-
ration Framework for Xilinx FPGAs,” in 20th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM).
IEEE Computer Society, Apr. 2012.

[6] “Project website: Context Switching Reconfigurable Hard-
ware for Communication Systems.” [Online]. Available:
http://www.mn.uio.no/ifi/english/research/projects/cosrecos/


