
AN INFRASTRUCTURE TO INSTRUMENT APPLICATIONS AND MEASURE
PERFORMANCE IN SELF-ADAPTIVE COMPUTING

Davide B. Bartolini †, Filippo Sironi †‡, Donatella Sciuto †, Marco D. Santambrogio †‡

† Dipartimento di Elettronica e Informazione, Politecnico di Milano
‡ Computer Science and Artificial Intelligence Laboratory, Massachussets Institute of Technology
{bartolini,sironi,sciuto,santambrogio}@elet.polimi.it, {sironi,santa}@csail.mit.edu

ABSTRACT
The shift of mainstream computing architectures to the par-
allel paradigm, together with the increasing demand for func-
tional and non-functional requirements for modern applica-
tions result in a heavy burden for developers and administra-
tors when trying to design and tune computing systems. One
of the possibilities for lightening this burden comes from re-
search on runtime self-management and adaptation, which
aims at automatizing the runtime management of computing
infrastructures. The availability of accurate and appropriate
system status information (i.e., self-awareness) is crucial for
self-adaptive systems to be functional and useful, and can be
achieved through runtime measures provided by monitors.

This paper illustrates recent advances in the develop-
ment of an infrastructure for monitoring applications’ through-
put called Heart Rate Monitor (HRM). Its design and struc-
ture are illustrated and a showcase of its capabilities is pro-
vided. HRM introduces novel features for a runtime mon-
itor, allowing versatile instrumentation and exposing rich
runtime information. These characteristics make HRM an
enabling technology for advanced adaptation techniques.

1. INTRODCUTION
The turn of computer architectures from the well understood,
single-core structure to multiple (possibly heterogeneous)
processing elements is pervasive. This change has been dic-
tated by physical (i.e., inability to increase the clock fre-
quency) and architectural (i.e., diminishing performance re-
turns from efforts in further optimizing the individual pro-
cessors’ internal architecture) constraints [1]. To survive its
commitment to exponential performance improvements, the
computer industry changed its strategy, leading to the multi-
core era. However, new issues are arising, as modern multi-
core processors hit the power wall, being thus constrained
to make use of (i.e., switch) only a part of their transistors
at the same time and leading to the phenomenon called dark
silicon [2].

In the single-core era, faster processors provided soft-
ware performance improvements and applications experi-
enced the so-called “free lunch”, with free-of-charge speedups
just by switching to the next-generation CPU. The new par-
allel course in computer architectures, despite being due to
architectural causes, carries the side effect of ending the

“free lunch”, posing a considerable burden of improving
performance on software developers. The demands for ef-
ficient and reliable parallel software sums up to the already
considerable bulk of expertise software developers need to
successfully cope with requirements for computing perfor-
mance, functionality, reliability, and constraints satisfaction
due to today’s IT. Moreover, computational resources must
be carefully managed to avoid hitting power and thermal
limits, while respecting Service Lever Agreements (SLAs).
This situation leads to an increased need of pushing as much
of the system management as possible into computing sys-
tems themselves, making autonomic computing a possible
breakthrough for IT success [3].

Respecting SLAs employing the least amount of resources
is one of the goals of Autonomic Computing [3]. Such sys-
tems are required to monitor themselves and the environ-
ment, detect significant changes, decide a chain of actions,
and actuate them [4]. The activity of gathering runtime in-
formation (referred to as either observe or monitor phase)
is crucial, and the availability of accurate and appropriate
status information can determine the efficacy of the system.

This paper focuses on this phase, presenting an active
monitoring [5] infrastructure to observe applications’ through-
put: the Heart Rate Monitor (HRM). HRM is designed to be
versatile and provide rich information accounting for sim-
plicity, usability, and functionality. HRM has been success-
fully employed as a building block in a previous work: the
Metronome [6] framework, demonstrating its utility in gath-
ering relevant runtime information used to provide perfor-
mance-awareness in an experimental autonomic operating
system. The present paper shifts the focus from the actua-
tion phase to the observation phase and on HRM, providing
more details regarding its design principles and implementa-
tion, describing novel features which were missing in early
revisions of HRM.

2. DESIGN AND IMPLEMENTATION
Throughput is one of the most used metrics for character-
izing applications’ performance. For instance, the perfor-
mance of a web server can be characterized in terms of re-
quests served within each time unit (i.e. requests

second ) while a
video encoder can express its performance using the encod-
ing frame rate (i.e., frames

second ). Being able to access accu-



Heart Rate Monitor

Producers
P6

G1

G2

G3
Consumers

A

Heartbeats

Goals

Corrective
actions

Heart rate–Goals

P3

P1

P2

P4

P5
D

O

Fig. 1. Black box view of the Heart Rate Monitor. The
inputs are heartbeats emitted by instrumented producers, or-
ganized in groups, and goals set by the users. HRM outputs
heart rate measures to consumers, creating an ODA adapta-
tion loop.

rate and comprehensive information about the throughput of
mission-critical applications and to set meaningful perfor-
mance goals in terms of high-level well understood metrics
can enable the system to enact adaptation of resources allo-
cation in order to match SLAs. HRM is designed exactly
for this reason: it lets software developers instrument the
resource-demanding section (called the kernel, or hotspot)
of the application to emit a heartbeat per unit of work done
and provides throughput measures in terms of a heart rate [6].
Moreover, HRM allows expressing goals in terms of a min–
max heart rate window, which directly maps to an application-
specific goal.

The advantages of HRM compared to similar solutions
(e.g., Application Heartbeats [7, 8]) lie in functionality and
efficiency. HRM is functionally superior since it grants both
the user and the kernel-space the permission to access infor-
mation (supporting both the Linux kernel [9] and the FreeBSD
operating system [10]). Moreover, HRM supports any kind
of parallelization model (i.e., multi-threading and multi-proc-
essing, spawning/waiting, pooling, pipelining, etc.). In terms
of efficiency, HRM is very low-overhead thanks to its dis-
tributed and asynchronous design. In addition, HRM has
been recently extended, without sensibly increasing its over-
head, with the ability to provide heart rate measurements on
multiple windows at the same time. The availability of such
information poses a challenge for research, calling for more
intelligent adaptation policies able to understand the correct
time scale to consider and to take proactive actions to match
applications’ goals.

2.1. Black Box View
We can consider HRM as a black box implementing a pro-
ducer/consumer model similar to the one employed by the
Performance and Environment Monitoring (PEM) [11]: pro-
ducers emit heartbeats for signaling progress and consumers
access the heart rates computed by the monitor. HRM acts
as an interface, collecting heartbeats, transforming them in
throughput measurements, and making them available, re-

alizing the observation phase of the Observe, Decide, Act
(ODA) adaptation loop. Figure 1 represents this black box
view, highlighting the flow of information from producers to
consumers through, going through HRM, which enables the
realization of the ODA adaptation loop.

To provide flexibility and be useful in current and future
parallel systems, HRM must support monitoring any kind
of parallel workload (i.e., multi-threaded, multi-processed,
or any feasible mix of the two); this is attained by defining
monitoring groups (marked as Gi in Figure 1). A group is
a set of tasks cooperating for a certain activity (e.g., encod-
ing video frames) and it constitutes the atomic monitoring
entity.

Throughput measurements are computed as heart rates,
i.e., for each group, the summation of the heartbeats emit-
ted by all the producers over the elapsed time. Clearly, for
such a measurements, the considered time horizon matters:
considering the whole execution time provides a smoothed
average, while considering a shorter time span discards the
old history and allows to better highlight short-term trends.
For this reason, HRM provides both a global and a window
heart rate, allowing tuning the focus on longer or shorter-
term trends as required by the specific monitoring context.
Moreover, several measures on windows of different size
(i.e. moving averages on different horizons) can be accessed
at the same time to highlight different trends and providing
richer information to consumers.

HRM allows for a simple yet general way of setting a
desired value for the heart rate of a group through two pa-
rameters: a minimum and a maximum heart rate, defining the
desired throughput range; moreover, it is possible to tie the
goal to a specific window heart rate. For instance, dealing
with a video encoder, the minimum heart rate could be set to
the minimum frame rate to guarantee the desired QoS (e.g.,
30 frames

second ), the maximum could be set to a value over which
no sensible benefit would be achieved and the goal could be
tied to a certain time horizon according to how much buffer-
ing space is available for the encoded video.

Interaction with HRM is provided through a simple API
implemented by libhrm: instrumenting an application needs
as little as adding a couple of calls for attaching to a group
and emitting heartbeats. Consumers are provided with a
simple and powerful API, which was extended to support
the new features. Details on the API are skipped here due to
space constraints.

2.2. Under the Hood
The implementation of HRM has been partitioned between
user and kernel-space. Partitioning the implementation low-
ers the overhead due to heartbeats emission while allowing
the design of both user and kernel-space adaptation policies
(i.e., consumers). The user-space partition is essentially an
implementation of libhrm. The management logic, which
handles grouping and logging, is implemented in kernel-
space. Communication among different address spaces is



1.
00

x 1.
37

x

1.
53

x

1.
71

x

1.
00

x

1.
96

x

2.
85

x

3.
69

x

1.
00

x

0.
82

x

1.
00

x

1.
80

x

HRM (non-optimized)
HRM

Core i7-870 Pentium D 820

Th
ro

ug
hp

ut
 S

pe
ed

up

0x

1x

2x

3x

4x

Number of Threads
1 2 3 4

Number of Threads
1 2

Fig. 2. Throughput speedup in emitting heartbeats when
scaling the number of concurrent producers per group.

enabled through shared memory, which grants low-overhead
accesses from each side. For each group, the kernel allo-
cates memory to store the information; memory segments
are mapped in the address space of producers and user-space
consumers upon group attachment. This way, all the entities
of the group can access (with proper read/write privileges)
the information. Sharing memory among different address
spaces (and even within the same address space) is a del-
icate practice. Requiring carefully laid out data structure
to achieve high efficiency. Since the most frequent opera-
tion within a group is emitting a heartbeat, the associated
code path must be thoroughly optimized. This is done with
a mapreduce-like approach, decoupling heartbeats emission
and data computation (i.e., heart rates). Each producer re-
ceives counter within group memory to store the amount
of heartbeats generated. Heartbeats emission becomes as
quick as the increment of an atomic integer. Snapshots of the
emitted heartbeat counts for all the active windows are pe-
riodically (with tunable period, defaulting at 100ms) made
available to allow on-demand heart rates computations. This
way, heart rates are represented as floating point numbers in
user-space and integer numbers in kernel-space, where float-
ing point computation is discouraged. When a consumer
asks for the global heart rate, such measurement is computed
according to Equation 1. The window heart rate is otherwise
computed according to Equation 2.

ghrg(t) =

∑
i cnti(t)

t− t0
(1)

whrg(t) =

∑
i cnti(t)− cnti(t− tw)

t− tw
(2)

In the formulae, t indicates the current timestamp, t0 is the
time at which the group was created, cnti are the counters
associated with each of the group’s producers, and tw in-
dicates the timestamp at the beginning of the window. To
compute the window heart rates, HRM uses a circular buffer
to store, at each accounting period, a snapshot of the current
overall heartbeats count for the group and the timestamp.

This approach requires a careful implementation to avoid
pitfalls resulting in poor performance. The memory location
of each counter must be cache line-aligned to avoid false

global
window60 s
window30 s
window15 s
window10 s
window5 s
window1 s

(1) initial load ends

(2) short load begins

(3) short load ends (4) long heavy load begins

(5) long heavy load ends

Th
ro

ug
hp

ut
 [h

ea
rt

be
at

s/
s]

10×106

20

30

40

50×106

Time [s]
50 100 150 200

Fig. 3. Global and six different window heart rates of an
ad-hoc application showing different performance trends.

sharing, which would cause useless cache coherency traf-
fic [12]. Figure 2 shows the speedup on throughput that can
be achieved going scaling the number of producers emitting
heartbeats in a tight loop for the same group. The test com-
pares the optimized (final) revision with the non-optimized
(i.e., non cache-friendly) revision of HRM on different pro-
cessors. On the left side, the test is run with one to four
concurrent producers executing on a quad-core Intel Core
i7-870 processor with the Intel Hyper-Threading Technol-
ogy disabled; both the non-optimized revision and the op-
timized revision of HRM scale. However, the latter scales
almost linearly with the number of producers since it avoids
false sharing. The On the right side, the same test is run
with one to two concurrent producers executing on a dual-
core Intel Pentium D 820 processor; the optimized revision
of HRM scales almost linearly while the non-optimized revi-
sion of HRM shows a slow down when two producers emit
heartbeats together for the same group. The slow down is
due to the false sharing problem, which causes a notable
performance decrease due to the off-chip (i.e., through the
northbridge), inefficient cache coherency protocol of the In-
tel Pentium D processor.

3. SHOWCASE AND CASE STUDY
HRM has been employed within the Metronome [6] frame-
work to measure applications’ throughput, information that
is later used to adapt process scheduling. Previous work
proved the efficiency of HRM compared to the reference
implementation of Application Heartbeats [13]. This is an
incremental work extending the functionality of HRM with
multiple window heart rates, a novel feature not yet adopted
in similar contexts. Figure 3 presents a showcase of this ca-
pability: a 4-threaded microbenchmark is run to emit heart-
beats as fast as possible on a quad-core Intel Core-i7 870
processor while many workloads differing in both duration
and intensity run simultaneously. CPU-bounded workloads
are simulated through the cpuburn utility. HRM is used
with the multi-window capability to highlight performance



x2641 x2642

Th
ro

ug
hp

ut
 [f

ra
m

es
/s

]

0

50

100

150

Time [s]
0 50 100 150 200 250

(a) Unmanaged instances of x264.

x2641 x2642

Th
ro

ug
hp

ut
 [f

ra
m

es
/s

]

0

50

100

150

Time [s]
0 50 100 150 200 250

(b) Managed instances of x264; goals set at 30− 60 and 70− 100 frames
s

.

Fig. 4. Global and window heart rates for the x264 instances scheduled by the CFS (a) and by the adaptive scheduler (b).

trends and hence workloads’ phases. In absence of addi-
tional workloads, the microbenchmark peaks at about 40 ×
106 heartbeats

s . The traces on the plot track the global heart
rate and six different moving averages of size {1, 5, 10, 15,
30, 60}s1. The execution presents six phases: initially, up to
the point marked (1), there is a light additional load which
then terminates, letting the benchmark reach its peak perfor-
mance up to point (2), when another external load is started.
At point (3) the second load terminates and the microbench-
mark goes back to its peak throughput but, at point (4), a
heavier and longer-lasting load is applied up to point (5).
It can be noticed from the plot how measurements on dif-
ferent time horizons highlight different trends: short win-
dows give a prompt feedback when changes happen; how-
ever, they tend to be noisy when the execution is regular.

3.1. Adaptive Performance-Aware Scheduling
We evaluated the enhanced revision of HRM within the Met-
ronome [6] framework. HRM monitors two 4-threaded in-
stances of the x264 application [14] encoding the Big Buck
Bunny full HD movie [15]. The test platform is a quad-core
Intel Core-i7 870 processor with the Intel Hyper-Threading
Technology disabled running a modified version of Debian
GNU/Linux [9]. The window size has been empirically set
to 5s after an experimental evaluation using the multi-window
capability of the latest revision of HRM. Figure 4 shows the
results of this experiment: since the two instances are ex-
actly the same, they have almost overlapping performance
when scheduled by the Completely Fair Scheduler (CFS),
as shown in Figure 4(a). The experiment consists in set-
ting two different high-level performance goals for the two
instances and let the adaptation policy implemented within
the Metronome framework dynamically allocate processor
time to match the performance goals. Figure 4(b) shows the
managed case: the performance goals (i.e., the red and green
shaded areas), are 30− 60 frames

second and 70− 100 frames
second and

1Note that when there is not enough data to compute a window heart
rate over its full size, the measure is still provided using the available data.

the two instances of x264 are driven towards meeting their
SLAs. The throughput of the slower application receives a
sudden speedup when the other terminates, since it is now
the only application in execution and the maximum heart
rate is considered as a soft bound on the QoS, and not as a
performance cap.

4. CONCLUSIONS
HRM proved to be a flexible, efficient, and scalable through-
put monitor and was employed for realizing adaptive com-
puting. This paper offers a detailed description of the careful
design of HRM, which allows to provide very small over-
head, and provides a showcase of a novel feature: the avail-
ability of measurements on multiple tunable moving aver-
ages. We believe that this feature could be exploited by
smarter adaptation policies able to leverage this richer sta-
tus information in order to take more effective adaptation
decisions.

5. REFERENCES
[1] S. H. Fuller et al., “Computing Performance: Game Over or Next Level?” Com-

puter, vol. 44, no. 1, 2011.
[2] H. Esmaeilzadeh, et al., “Dark silicon and the end of multicore scaling,” in Proc.

of ISCA, 2011.
[3] J. O. Kephart et al., “The Vision of Autonomic Computing,” Computer, vol. 36,

no. 1, 2003.
[4] M. Salehie et al., “Self-Adaptive Software: Landscape and Research Chal-

lenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, 2009.
[5] M. C. Huebscher et al., “A survey of Autonomic Computing: Degrees, Models,

and Applications,” ACM Comput. Surv., vol. 40, no. 3, 2008.
[6] F. Sironi, et al., “Metronome: Operating System Level Performance Manage-

ment via Self-Adaptive Computing,” in Proc. of DAC, 2012.
[7] H. Hoffmann, et al., “Application Heartbeats for Software Performance and

Health,” in Proc. of PPoPP, 2010.
[8] ——, “Application Heartbeats: a Generic Interface for Specifying Program Per-

formance and Goals in Autonomous Computing Environments,” in Proc. of the
ICAC, 2010.

[9] “The Linux Kernel,” http://www.kernel.org/.
[10] “The FreeBSD Project,” http://www.freebsd.org/.
[11] C. Cascaval, et al., “Performance and Environment Monitoring for Continuous

Program Optimization,” IBM J. Res. Dev., vol. 50, no. 2/3, 2006.
[12] M. M. K. Martin, et al., “Why On-Chip Cache Coherence is Here to Stay,”

Commun. ACM, vol. 55, no. 7, 2012.
[13] “Application Heartbeats,” http://code.google.com/p/heartbeats/.
[14] “x264 - H.264/ACV encoder,” http://www.videolan.org/developers/x264.html.
[15] “Big Buck Bunny,” http://www.bigbuckbunny.org/.


