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Preface

The current landscape of computing sees a continuing trend towards increasingly complex, het-
erogeneous and distributed systems. This does not only raise the question of how to efficiently
develop applications for such systems, but also how to cope with dynamic changes in the applica-
tion requirements or the system itself. Self-awareness is an emerging field of research in computing
that considers systems and applications that gather and maintain information about their current
state and environment, reason about their behaviour, and adapt themselves if necessary.

Reconfigurable hardware, such FPGAs, is a technology that is becoming increasingly relevant
to embedded and high-performance applications. Being able to adapt the functionality through
dynamic reconfiguration is an inherent benefit of reconfigurable devices. Over the past decade,
significant progress has been made in tools and methods for approaches that require the exchange
of a number of functional units in a pre-defined scenario. However, it is still an open question how
we can harness the benefits of reconfigurable technology for systems that automatically adapt to
changing requirements or environments. Recent research has investigated several so-called self-*
properties such as self-modifying, self-optimising or self-healing as a means of improving flexibility,
performance or reliability of applications targeting reconfigurable hardware. Self-awareness extends
this line of research and includes aspects such as reasoning, learning and intelligence to a run-time
adaptive system.

The Workshop on Self-Awareness in Reconfigurable Computing Systems (SRCS) was created
to bring together researchers who are active in this field, present their current work, and share
their concepts and visions of self-aware systems. The topics of interest for this workshop are:

• Concepts and foundations of self-aware systems.

• Architectures, control and infrastructure for self-aware systems.

• Algorithmic approaches for self-awareness.

• Engineering self-aware reconfigurable systems.

• Advanced autonomous and self-adaptive systems.

• Applications using self-awareness or self-adaptivity.

The workshop was held on 1. September 2012 in Oslo, Norway, and co-located with the 2012
International Conference on Field Programmable Logic and Applications (FPL). Of all papers
submitted to this workshop, 6 were selected for regular presentations and 6 were accepted as posters.
In addition, we were able to attract 3 invited speakers from industry and academia, resulting in a
diverse program that covers many aspects of self-aware systems. We would like to thank all authors
for submitting their work to the workshop. We would also like to thank the program committee
for reviewing papers and helping with the paper selection. We gratefully acknowledge the financial
support of Awareness, a FET coordination action funded by the European Commission under FP7.
Special thanks go the the FPL organisers who helped us co-locating this workshop with FPL 2012.
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Marco Platzner, University of Paderborn
Arjun Chandra, University of Oslo
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INVITED TALK: AN OUTLOOK FOR SELF-AWARENESS IN COMPUTING SYSTEMS

Peter Lewis

School of Computer Science
University of Birmingham

United Kingdom
email: p.r.lewis@cs.bham.ac.uk

Talk summary

Novel computing systems are increasingly being composed
of large numbers of heterogeneous components, each with
potentially different goals or local perspectives, and con-
nected in networks which change over time. Such future
computing systems, from robots to personal music devices
to web services, should be able to achieve advanced levels
of autonomous behaviour, in order to adapt themselves at
run-time and learn behaviours appropriate to changing con-
ditions. Nevertheless, users engaging with different parts of
the system still expect high performance, reliability, security
and other qualities. Such systems will therefore be faced
with the challenge of managing trade-offs between these con-
flicting goals at run-time, both at the global and at the local
level, in response to changing conditions, and sometimes
with humans in the loop.

In order for a system to effectively adapt itself, its abil-
ity to be self-aware becomes important. Self-awareness is
concerned with the availability, collection and representation
of knowledge about something, by that something. A self-
aware node has knowledge of itself, permitting reasoning and
intelligent decision making to support effective, autonomous
adaptive behaviour. Such self-information might include its
internal state, its history, its social or physical environment,
its goals, or perhaps even its own way of representing or
reasoning about these things.

There are several clusters of research in computer science
and engineering which have used the term self-awareness
explicitly. However, there is no general methodology or
common framework for describing or benchmarking the self-
awareness capabilities of these systems, or the benefits that
self-awareness brings. In this talk, I shall survey definitions
and current understanding of self-awareness in psychology,
focussing on three key concepts: public and private self-
awareness, different levels of self-awareness, and the emer-
gence of self-awareness in collective systems. I will then
attempt to translate these concepts from psychology to the
computing domain, and show how their explicit consideration

may be beneficial in the engineering of adaptive computing
systems. Based on this understanding, I shall present a work-
ing definition for self-aware computing systems, with the aim
of providing common ground for future discussions.

I will then describe some prospects for realising an in-
creased capacity for self-awareness in computing systems,
and what will be required in order to achieve the increased
adaptivity and robustness that the vision promises. Online
learning is expected to play a key role, as will techniques
for decision-making in the presence of multiple objectives,
representative of the conflicting goals of adaptive nodes in
dynamic heterogeneous environments.

Finally, I will describe some challenges which need to
be faced in both developing and applying self-aware sys-
tems. For example, how should self-aware systems learn
and adapt to changing conditions at run-time, considering
trade-offs both between system goals and the overheads as-
sociated with learning itself? Another critical question is
that of how to formulate claims about what we can expect
from self-aware systems, when deployed in uncertain and
dynamic environments. As should become clear, there is still
much to understand about how to incorporate self-awareness
properties into computing systems.

About the speaker
Peter Lewis is a post-doctoral research fellow at the Centre
of Excellence for Research in Computational Intelligence
and Applications (Cercia) in the School of Computer Science
at the University of Birmingham. His research is concerned
with investigating algorithms and techniques for achieving
self-awareness and self-expression in decentralized com-
putational systems. Particular focuses include economics-
inspired computational techniques and online learning algo-
rithms, such as those using evolutionary computation and
other nature-inspired techniques. He obtained his PhD from
the University of Birmingham in 2010, on the topic of evo-
lutionary market-based resource allocation in decentralised
computational systems.
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INVITED TALK: SELF-AWARENESS AND ADAPTIVE TECHNOLOGIES:
ARE THEY THE FUTURE OF OPERATING SYSTEMS?

Lamia Youseff

Google, Inc.
email: lyouseff@google.com

Talk summary
Trends in multicore architectures point to an ever-increasing
number of cores available on a single chip. Moore’s Law
predicts an exponential increase in integrated circuit density;
in the past, this increase in circuit density has translated into
higher single-stream performance, but recently single-stream
performance has plateaued and industry has turned to adding
cores to increase processor performance. In a few years,
multicores have gone from esoteric to commonplace.

Given exponential scaling, it will not be long before chips
with hundreds of cores are standard, with thousands of cores
following close behind. This new architecture trend is provid-
ing an exciting opportunity for exploring different research
directions in scaling operating systems. At the same time, a
similar, independent trend can be seen in the growth of cloud
computing. Rather than consolidating a large number of cores
on a single chip, cloud computing consolidates multicore ma-
chines within a data center. There is much commonality
between constructing OSs for clouds and multicores, such as
large-scale resource management, heterogeneity, and possi-
ble lack of widespread shared memory [1]. These similarities
allow operating systems to be designed for both multicore
and cloud computers.

The primary question facing OS designers over the next
ten years will be: What is the correct design of OS services
that will scale up to hundreds or thousands of cores? We
argue that the structure of monolithic OSs is fundamentally
limited in how they can address this problem. In contrast,
our work explored a new factored structure for the OS, which
we dubbed fos for “factored operating system” [2]. The
structure of fos brings scalability concerns to the forefront
by decomposing an OS into services, and then parallelizing
within each service. To facilitate the conscious consideration
of scalability, fos system services are moved into userspace
and connected via messaging. In fos, a set of cooperating
system servers which implement a single system service is
called a fleet. However, a fundamental research challenge in
this design is to identify the characteristics of such a fleet.
Given the unprecedented variability in demand of the system
resources, the OS fleets have to deploy elastic techniques to
adapt to this variability at runtime.

We argue that the OS services have to deploy elastic tech-
niques to adapt to this variability at runtime. In this talk, we

advocate for elastic OS services, illustrate their feasibility
and effectiveness in meeting the variable demands through
our prototype system, dubbed elastic fos or “e-fos”, which
provides elastic technologies for OS services in the fos operat-
ing system [3]. We furthermore showcase a prototype elastic
file system service in e-fos and illustrate its effectivness in
meeting variable demands.

About the speaker
Dr. Youseff holds a Ph.D. degree in Computer Science from
the University of California, Santa Barbara and has received
her post-doctoral training at MIT working at CSAIL with
Professor Anant Agarwal on research in cloud computing,
operating systems and next generation exascale computing
paradigm. Dr. Youseff has received several awards, includ-
ing the international ACM-UPE’02, the AUC presidential
cup’03, XHPC best paper award’06 and IPDPS best poster
award’08 at the TCPP forum. In addition, she has served as
a program committee member, program co-chair and orga-
nizer to several top conferences and workshops in computing
systems, including SOCC, DAC and USENIX Middleware.
She also has tens of technical publications and book chapters
with more than 1000 non-self citations. She is currently a
research software engineer in cloud computing at Google
Seattle, WA office. Dr. Youseff worked on fos and e-fos with
the fos Carbon group between 2009 and 2011 when she was
affiliated with CSAIL, MIT.

1. REFERENCES
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C. Gruenwald III, D. Wentzlaff, L. Youseff, and A. Agarwal,
“A Unified Operating System for Clouds and Manycore: fos.”
[Online]. Available: http://mit.dspace.org/handle/1721.1/49844

[2] D. Wentzlaff, C. Gruenwald, III, N. Beckmann,
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INVITED TALK: THE CHANGE PROJECT!
ENABLING TECHNOLOGIES FOR SELF-AWARE ADAPTIVE COMPUTING SYSTEMS

Marco D. Santambrogio

Dipartimento di Elettronica e Informazione, Politecnico di Milano
email: marco.santambrogio@polimi.it

Talk summary

The computing industry is at a major crossroad. Semicon-
ductor technology offers billions of transistors on a chip, the
level of integration and the speed of components have in-
creased dramatically over the years, and advancements show
no sign of abating. Post silicon technologies such as graphene
electronics could offer even more industrially viable com-
puting power within years. In recent times, unfortunately,
these advancements have not resulted in a proportional in-
crease in performance or other measures of interest to users.
Even though technologies have improved, we continue to
apply outdated approaches to our use of these resources, and
key computer science abstractions have not changed since
the 1960’s. Furthermore, reconfigurable architectures and
multicore processors are becoming prevalent. Therefore, the
complexity of computing systems is increasing up to the
point that it is no longer practical for an average programmer
to balance all of the system constraints and produce applica-
tions that perform well on a variety of machines, in a variety
of situations. Within this context, this is the right time for a
fresh approach to the way systems are designed and used.

Imagine a revolutionary computing system that can ob-
serve its own execution and optimize its behavior with respect
to the external environment, the user desiderata and the appli-
cations demands. Imagine providing users with the possibil-
ity to specify their desired goals rather than how to perform a
task, along with constraints in terms of energy budget, time,
and results accuracy. Imagine, further, a computing chip that
performs better, according to a set of goals expressed by the
user, the longer it runs an application. Self- Aware comput-
ing is a research area aimed at leveraging the new balance
of resources to improve performance, utilization, reliability
and programmability, overcoming the burden imposed by
the increasing complexity and the associated workload of
modern computing systems. Self-aware computing systems
will be able to configure, heal, optimize, protect themselves
and improve interaction with the user and the environment
without the need for human intervention, through learning
abilities that will allow them to automatically find the best
way to accomplish a given goal with the resources at hand.
Within this context, the need for a systematic approach to the

design of architectures and systems enabling self-awareness
has been motivated by some trends that have gained momen-
tum in the past few years. On one hand there is the increasing
importance of non-functional constraints in the perceived
value of a digital system; features that cannot be completely
translated to functionalities are getting more important. On
the other hand there is the increasing structural complexity of
devices, which in turn increases the number and the complex-
ity of interacting peer elements at various levels, e.g., cores
on a multicore processor, concurrent programs in a multitask
operating system, number of threads within an application.

Within this context, this talk present the work that we are
doing in proposing a new way of thinking and approaching
computer systems that reflects 21st century demands and
opportunities. During this talk, after a general presentation
of the overall CHANGE project two examples, morphone
and AcOS and will be presented and the relation between
CHANGE and DRESD (the reconfigurable computing re-
search project) will be discussed.

About the speaker
Marco D. Santambrogio received his laurea (M.Sc. equiva-
lent) degree in Computer Engineering from the Politecnico
di Milano in 2004, his second M. Sc. degree in Computer
Science from the University of Illinois at Chicago (UIC) in
2005 and his PhD degree in Computer Engineering from
the Politecnico di Milano in 2008. Dr Santambrogio was at
the Computer Science and Artificial Intelligence Laboratory
(CSAIL) at MIT as postdoc fellow and he is now assistant
professor at Politecnico di Milano, research affiliate at MIT
and adjunct professor at UIC. Marco D. Santambrogio is a
member of the IEEE, the IEEE Computer Society (CS) and
the IEEE Circuits and Systems Society (CAS). He has been
with the Micro Architectures Laboratory at the Politecnico
di Milano, where he founded the Dynamic Reconfigurability
in Embedded System Design (DRESD) project in 2004 and
the CHANGE project (Self-Aware and Adaptive Computing
Systems) in 2010. He conducts research and teaches in the
areas of reconfigurable computing, computer architecture,
operating system, hardware/software codesign, embedded
systems, and high performance processors and systems.
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SYSTEM LEVEL SYNTHESIS FLOW FOR SELF-ADAPTIVE MULTI-MODE
RECONFIGURABLE SYSTEMS

Stefan Wildermann, Felix Reimann, Daniel Ziener, Jürgen Teich

University of Erlangen-Nuremberg, Germany
{stefan.wildermann, felix.reimann, daniel.ziener, juergen.teich}@cs.fau.de

ABSTRACT

This paper presents a synthesis flow to design self-adaptive
multi-mode reconfigurable systems on the system level. Such
systems are able to react on environmental changes by switch-
ing operational modes through hardware reconfiguration. Thus,
they can provide context-aware processing while efficiently
utilizing the (constrained and restricted) system resources.

1. INTRODUCTION
Embedded systems of any kind should have low cost, be
small and power efficient. This implies design constraints
(regarding these objectives but also requirements like real
time capabilities) and limited capacity for providing func-
tionality on the one hand. On the other hand, many embed-
ded systems, e.g., embedded smart cameras, are operating
in unknown, highly dynamic, and often unpredictable real
world environments so that a variety of complex algorithms
is required for a robust operation of the system. Due to con-
straints, only a subset of these algorithms may be used con-
currently in a configuration of the system. As a solution
for this tradeoff, context-aware and resource-aware adapta-
tion by re-organizing the configuration of algorithms at run-
time can lead to a better utilization of the system resources
in the presence of constraints and restrictions while retain-
ing and possibly even optimizing the processing quality of
the system. Here, reconfigurable hardware is a solution to
further increase the flexibility of the system despite these
constraints by offering the capability of sharing hardware
resources between different configurations mutually exclu-
sive.

2. SELF-ADAPTIVE MULTI-MODE SYSTEMS
In a more abstract view of this system model, the set G =
{Gi | i = 1, ..., n} denotes all n algorithms which are pro-
vided by the designer. During run-time, different combi-
nations of these algorithms can be executed on the avail-
able architecture, each representing an operational mode O
of the system. Ideally, each possible combination of algo-
rithms could be run in the system. However, due to afore-
mentioned constraints, only a small subset of configuration
may actually constitute feasible operation modes, and only
such modes are allowed to be executed.

input

algorithm G1

algorithm G2

...

algorithm Gi

fusion component
f{ai(t)}Gi∈O

result
r(t)

a1(t)

a2(t)

ai(
t)

monitorreconfiguration

exchange
algo-

rithms

algorithm base G

algorithm Gj

quality Qj
algorithm Gj

quality Qj
algorithm Gj

quality Qj

observer
contoller

Fig. 1. Self-adaptive system architecture fusing the results
of multiple algorithms and adapting this configuration when
the current algorithms do not work efficiently.

Therefore, the idea is to additionally equip the multi-
mode system with an autonomous Control Mechanism (CM)
which is able to observe and control the system [1]. The
purpose of the CM is to detect environmental changes and
degeneration of the system’s processing quality (observe). It
can then react by modifying the system configuration through
a transition to a new operational mode (control). The system
architecture as illustrated in Fig. 1 is described next.

2.1. Self-adaptive System Architecture

The operational mode of the system at instant of time t is
represented by the set of active algorithms O(t) ⊆ G, where
each algorithm Gi ∈ O(t) calculates a result ai(t). These
results are fused by a fusion function f to produce the result
r(t) of the overall system at time t:

r(t) = f{ai(t)}Gi∈O (1)

The observer evaluates the quality of each active algo-
rithmGi ∈ O(t) by an adequate quality function q̃(ai(t), r(t)),
which measures how good a filter is predicting the result
r(t):

q̃(ai(t), r(t)). (2)

4



The normalized qualities qi are then given as

qi(t) =
q̃(ai(t), r(t))∑

Gj∈O

q̃(aj(t), r(t))
(3)

so that the sum of all qualities sum up to 1. The number
Neff of algorithms which are now efficiently contributing to
the system output can be calculated based on these qualities
as:

Neff =
1

∑
Gi∈O(t)

(
qi(t)

)2 (4)

Furthermore, a long term estimate Qi of the algorithms
qualities is generated according to

Qi = (1− λ) ·Qi + λ · qi(t). (5)

The controller takes these results to test whether a recon-
figuration of the system is necessary. If so, the new system
configuration O(t + 1) has to be determined. This decision
is based on a fitness value Z(O) used for each mode O. It
is calculated as the multiplied qualities of its algorithms ac-
cording to

Z
(
O
)
=

∏

Gi∈O∩O(t)

qi(t) ·
∏

Gi∈O\O(t)

Qi. (6)

The fitness value uses the actual qualities of all algorithms
which are part of the current mode O(t), and the estimated
qualities of inactive algorithms.

Algorithm 1 outlines the decision process for reconfigu-
ration. Adaptation is possible at the earliest θmod time steps
after having performed the previous modification at time
step tmod (line 1). This is required to give the system some
time to evaluate the quality of the new algorithms in the cur-
rent context. No modification is necessary if the system effi-
ciently manages to track an object. Therefore, adaptation is
only performed if the efficiency Neff is below a predefined
threshold (line 2). Note that threshold θeff (O) may depend
on the configuration since configurations may contain differ-
ent numbers of filters. For example, in case at least 75% of
the active filters should contribute to the result, the threshold
would be defined as θeff (O(t)) = 0.75 · |O(t)|.

Now, one of two behaviors is performed:

• Exploitation: With a probability of pexploit, the con-
troller selects that feasible mode O(t + 1) which has
the maximal fitness value.

• Exploration: With a probability of (1 − pexploit), the
controller selects a feasible mode O(t+ 1) randomly
with probabilities proportional to their fitness values.

2.2. Smart Camera Case Study

A smart camera application from [2] serves as a case study
to illustrate the behavior of systems implemented according

Algorithm 1: Control mechanism for reconfiguration
decision, which exchanges algorithms if necessary, ei-
ther by a behavior performing exploitation or explo-
ration.
1 if t− tmod > θmod then
2 if Neff < θeff (O(t)) then
3 generate random number rnd ∈ [0, 1];
4 if rnd ≤ pexploit then
5 doExploitation();

6 else
7 doExploration();

8 tmod = t;

0 50 100 150 200 250 300 350 400 450 500 550
time step [frames]

f1

f2

f3

f4

f5

f6

f7

(a) Gantt chart of system setup

Fig. 3. Gantt chart for a test sequence with color corruption.
The person is visible in the highlighted interval and color
corruption happens in the interval with darker color from
frame 219.

to above system architecture. It performs person tracking
based on the image processing filters illustrated in Figure 2.
The system executes a subset of these filters on the same
input image and fuses their results via a tracking algorithm
(cf. [2]). The tracking result is used to calculate the filter
qualities, indicating how good each filter has predicted this
result. The qualities are used to perform the adaptation as
described above.

Fig. 3 illustrates the system behavior for a image test se-
quence. The Gantt chart illustrates the time intervals when
each filter is active. In this test sequence, no person is visi-
ble between frames 0 and 150, and the system is arbitrarily
switching configurations after every θmod = 20 time steps
(frames) according to Algorithm 1. The person appears in
the scene around frame 150, and the system is successfully
tracking the person with color-based filters and edge-based
filters being loaded. A color corruption happens at frame
219 where the input image is switched to gray scale. As
the two color-based filters are unable to produce an output,
Neff falls below the threshold. The system adapts until the
color filters are removed from the system and replaced by
the more adequate motion-based filters. When the person
leaves at frame 310, all filters fail and the system switches
between configurations with after each θmod time steps.

5



(a) input (b) skin color in
RGB (f1)

(c) skin color in
YCbCr (f2)

(d) motion detec-
tion (f3)

(e) background
subtraction (f4)

(f) Canny edge de-
tection (f5)

(g) edge back-
ground (f6)

(h) Sobel edge de-
tection (f7)

Fig. 2. Examples of the filters used in the smart camera case study for person tracking. Filters f1 and f2 are color-based,
filters f3 and f4 are motion-based, and filters f5, f6, and f7 are edge-based.

2.3. Design Challenges

For performing the system adaptation, it is necessary to de-
termine the feasible modes of a system. However, system
synthesis in the presence of stringent design constraints (re-
stricted bandwidth, reconfigurable hardware, processor uti-
lization, etc.) is known to be NP-complete (cf. [3]). We
therefore propose a system level design methodology since
it would be too costly or even infeasible to select, verify, and
optimize each configuration at run-time.

Furthermore, design constraints limit the amount of com-
binations of algorithms that can be implemented as feasible
modes of the systems. Therefore, resource sharing becomes
a key concept to increase the number of feasible operational
modes: Even if not all algorithms are able to be executed
concurrently, subsets of algorithms can be executed on the
same resources as mutually exclusive operational modes. Of
course, sharing of computational resources can be achieved
by providing a schedule for each mode independently. How-
ever, through the use of reconfigurable hardware, it is also
possible to share hardware resources between modes. This
allows the cost and size to be decreased, while increasing
the resource utilization of the system. In this work, Field
Programmable Gate Array (FPGA) technology is the imple-
mentation target.

3. DESIGN FLOW

The methodology illustrated in Fig. 4 contains two manda-
tory design phases: The first one is configuration space ex-
ploration (CSE). For a given specification, the power set of
G constitutes the possible configurations (see Fig. 4(a) for
an example with three algorithms). The purpose of CSE is
to evaluate which of these configurations can be executed on
a given reconfigurable architecture layout as feasible modes
despite the constraints (see, e.g., Fig. 4(b)). We define an ex-
ploration model in [4] that captures the behavioral aspects of
self-adaptive systems and the spatial and technological as-
pects of FPGA-based reconfigurable system-on-chip archi-
tectures. We provide models in [5] for island style reconfig-
uration as well as 2-dimensional module placement accord-
ing to [6]. For performing CSE, a symbolic encoding of this
model is formulated that specifies the restrictions and design
constraints as a Pseudo Boolean (PB) Satisfiability problem.
By applying PB solvers, this encoding can be tested for sat-
isfiability. We then apply an algorithm called Feasible Mode
Exploration algorithm [7] that provides a scheme to effi-
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algorithms
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implementations

Fig. 4. System level synthesis flow. The first CSE phase
identifies the feasible modes for a given specification. In the
second DSE phase, the multi-mode reconfigurable system is
synthesized through iterative optimization.

ciently apply this test for the exploration of the configuration
space. This phase can be performed repeatedly to evaluate
and compare different architecture layouts and templates, as
indicated in Fig. 4. Based on the result of CSE, the designer
can then select the configurations of the system as well as
possible transitions between them. This is expressed by an
Operational Mode State Machine (OMSM) [8], as illustrated
in Fig. 4. The OMSM specifies how the CM can then switch
between modes at run-time.

The second design phase is Design Space Exploration
(DSE). DSE is a multi-objective optimization problem with
conflicting objectives like cost, area, power consumption,
and reconfiguration time. Our DSE approach [4] applies the
exploration model to derive several different implementa-
tions by (a) allocating resources from the architecture tem-
plate and remove those not required, which allows the size
of the architecture to be further reduced, (b) mapping tasks
onto the allocated resources (which also includes the 2-di-
mensional placement of hardware modules), and (c) routing
the communication between tasks. Each implementation is
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evaluated regarding the objectives and iteratively further re-
fined. The result of this phase is a set of non-dominated
implementations regarding the specified objectives.

4. EXPERIMENTS

We have implemented and tested our synthesis flow using
the publicly available PB solver Sat4j [9] and the publicly
available optimization framework OPT4J [10]. The flow is
applied to implement a self-adaptive reconfigurable smart
camera according to the case study from Section 2.2 using
image filter algorithms f1 to f6 from Fig. 2. The target ar-
chitecture is a reconfigurable system-on-chip according to
[6]. It contains two partially reconfigurable regions (PR re-
gions) for 2-dimensional module placement, as well as a
CPU-subsystem using a PowerPC. Four architecture alter-
natives are generated, the PR regions were divided in differ-
ent granularities of 4× 1 tiles (A1), 4× 2 tiles (A2), 14× 2
tiles (A3), and 28 × 2 tiles (A4) as illustrated in Figure 5.
Partial modules can be placed by occupying one or several
contiguous of such tiles.

As the application provides six image filter algorithms,
a total of 64 = 26 combinations are possible. The results
of CSE for the four architecture alternatives are presented
in Table 1. The results show that the finer the tiling, the
more efficient resource sharing can be performed, resulting
in more feasible modes. Moreover, the execution time can
drastically vary depending on the complexity of the explo-
ration model as well as the number of infeasible modes1. It
shows that such a test could hardly be performed online.

Fig.6 shows the results of performing DSE for the smart
camera case study with three operational modes. The opti-
mization objectives are to minimize 1.) the average recon-
figuration time, 2.) the power consumption, and 3.) cost of
the used resources. Since this is a multi-objective optimiza-
tion problem, we have chosen the ε-dominance where low
values ε ∈ [0, 1] indicate results with higher quality. The
symbolic DSE (dse) is compared to a state-of-the-art DSE
based on an Evolutionary algorithm [8] (moea). The results
show that the proposed symbolic approach converges much
faster to the optimum, while moea is trapped in a local opti-
mum.

1The latter being the case for A2. Testing infeasible modes normally
takes longer than testing feasible modes

Table 1. Results of CSE.
architecture # of feasible modes avg. execution time [min]

A1 16 0.28
A2 57 204.06
A3 62 3.47
A4 63 12.42
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Fig. 6. Result of DSE. Average ε-dominance results for test
case over the optimization time.

5. CONCLUSION

This paper proposes a system level design methodology for
self-adaptive systems which switch between algorithmic con-
figurations to maintain the system efficiency. The analy-
sis, verification, and optimization of such systems at design
time, as proposed by our methodology, is mandatory to guar-
antee feasible and highly optimized implementations.
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1. INTRODUCTION

Today’s design and operation principles and methods do not
scale well with future reconfigurable computing systems due
to an increased complexity in system architectures and ap-
plications, run-time dynamics and corresponding require-
ments. Hence, novel design and operation principles and
methods are needed that possibly break drastically with the
static ones we have built into our systems and the fixed ab-
straction layers we have cherished over the last decades.
Thus, we propose a HW/SW platform that collects and main-
tains information about its state and progress which enables
the system to reason about its behavior (self-awareness) and
utilizes its knowledge to effectively and autonomously adapt
its behavior to changing requirements (self-expression).

To enable self-awareness, our compute nodes collect in-
formation using a variety of sensors, i.e. performance coun-
ters and thermal diodes, and use internal self-awareness mod-
els that process these information. For self-awareness, on-
line learning is crucial such that the node learns and con-
tinuously updates its models at run-time to react to chang-
ing conditions. To enable self-expression, we break with the
classic design-time abstraction layers of hardware, operating
system and software. In contrast, our system is able to verti-
cally migrate functionalities between the layers at run-time
to exploit trade-offs between abstraction and optimization.

This paper presents a heterogeneous multi-core architec-
ture, that enables self-awareness and self-expression, an op-
erating system for our proposed hardware/software platform
and a novel self-expression method.

2. SELF-AWARE MULTI-CORE ARCHITECTURE

As architecture we propose a heterogeneous multi-core that
consists of processors (that execute software threads) and re-
configurable hardware cores (that execute hardware threads).
As prototyping platform, we use the programming model
and execution environment ReconOS [1]. ReconOS extends
the well-known multithreading approach to reconfigurable
hardware. Here, hardware threads can access the same shared
resources (i.e. shared memory, synchronization and commu-
nication primitives) like the software threads.

Fig. 1. Proposed heterogeneous multi-core architecture [2].

Figure 1 depicts an example architecture that consists of
three processors and two (reconfigurable) hardware cores.
The system contains a monitoring core that captures core-
specific information. We currently support ring-oscillator
based thermal sensors to capture the on-chip temperature
distribution and performance counters to measure the sys-
tem’s performance.

3. OPERATING SYSTEM

ReconOS extends current operating systems (OS), i.e., Linux
or eCos, to support reconfigurable hardware. In ReconOS,
hardware threads are represented by delegate threads in soft-
ware. Whenever a hardware thread makes an OS call, an
interrupt is generated and the function name and its parame-
ters are forwarded to delegate software thread. The delegate
thread makes the OS call on behalf of the hardware thread
and returns the results to the calling hardware thread.

Figure 2 gives an overview of the ReconOS system where
the software threads interact directly with the OS kernel,
while the hardware threads in the FPGA’s logic are con-
nected through operating system interfaces (OSIFs) and del-
egate threads. The operating system runs on one (main)
processor while the other processors (workers) only execute
software threads. The software on the worker processors are
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Fig. 2. Conceptual overview of the ReconOS system [1].

also represented by delegate threads on the main processor.
In extension to our previous work on ReconOS, we in-

troduce vertical function migration as a novel self-expression
method where the system can migrate threads between the
software, OS and hardware layers at run-time to affect vari-
ous aspects of the system such as performance, power con-
sumption, temperature etc.

4. SELF-EXPRESSION BY THREAD MIGRATION

Migrating a thread from the main processor to a hardware
core affects the performance, overall power consumption
and the thermal profile of the chip. Considering heteroge-
neous processors similar effects can be observed for the mi-
gration between processors. Migrating a thread into the OS
kernel is a special case which can lead to an improved per-
formance if the operating system distinguishes between the
a kernel space and a user space (such as Linux). In contrast
to a user thread, a kernel thread can avoid internal context
switches because it can directly access OS objects which
results in an improved performance. For thread migration
between hardware cores and between the hardware/software
boundary we propose cooperative multitasking [3] where the
threads have well-defined migration points and inform the
OS every time they reach these points. Resuming execution
form these migration points should be possible for both, the
hardware and the software thread.

In [4] we demonstrated that a heterogeneous multi-core
can regulate an application’s performance by adding and re-
moving software and/or hardware threads at run-time for a
particle filter-based video object tracker. The performance
of the application varies when a tracked object moves into
the foreground or the background because this influences
the computational complexity of the histogram calculation.
The system measured the execution time of the individual

threads in order to assess the application’s performance. Ac-
cording to a static internal performance model, the system
adapted the thread partitioning to either meet a user-defined
lower performance bound or to stay within a performance
budget. We currently work on a heterogeneous multi-core
that learns a thermal model at run-time and performs thermal
management autonomously using vertical thread migration.

5. CONCLUSION

To meet the rising dynamics, complexities and requirements
of future computing systems, we propose that future sys-
tems collect and maintain information about their system
state and their progress autonomously. Therefore, we have
proposed a HW/SW platform that consists of heterogeneous
HW/SW cores and a monitoring core which senses the cur-
rent state of each core. To enable self-expression, we break
with the classic design-time abstraction layers of hardware,
operating system and software. In contrast, our proposed
system vertically migrates threads between these layers to
affect various system characteristics, such as application per-
formance, temperature distribution and power consumption.
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1. INTRODUCTION

Today, computing nodes are everywhere, either visible as
laptops and mobile phones or invisible as embedded devices
in trains, home appliances or in the backbone of the Internet.
The management of those devices becomes more and more
difficult as the number of devices and the complexity of the
applications increase. In order to cope with this complexity
the idea of nodes with self-*1 features emerged.

In order to support self-* applications, Field Programm-
able Gate Arrays (FPGAs) are used as a basis to build (par-
tially) reconfigurable hardware platforms. However, in or-
der to use those platforms optimally, the software also needs
to be redesigned. In previous work we developed the Au-
tonomic Network Architecture (ANA) [1] which addresses
the most important problems in the networking area: scal-
ability, maintainability, and security. We also introduced
a node architecture for ANA that is based on partially re-
configurable FPGAs and uses ReconOS [2] as its operating
system [3]. The largest remaining challenge is to provide a
self-aware algorithm that decides which protocols should be
implemented in hardware and which in software.

In this paper we first briefly review the architecture of
networking nodes (Section 2), and then tackle this prob-
lem by (i) establishing a reasonable adaptation frequency
and classifying hardware/software mapping algorithms in
the context of networking (Section 3), (ii) developing mech-
anisms to algorithmically recognize periodic traffic patterns
that can be used as input to a mapping algorithm (Section 4);
and (iii) developing a simulator for networked hardware/soft-
ware systems that gives insights into the impact of different
parameters (Section 5). The results will be used for further
investigation in a self-aware hardware/software mapping al-
gorithm for networking applications.

The research leading to these results has received funding from the
European Union Seventh Framework Programme under grant agreement
no 257906.

1Where “*” can be a word such as healing, configuring, adaptation, etc.

2. NETWORKING NODE

For the rest of this paper, we assume that network nodes
have the architecture shown in Figure 1; we describe this ar-
chitecture as well as a prototype implementation more fully
in previous work [3]. The whole system is implemented on
an FPGA: the operating system runs on a CPU that is con-
figured into the FPGA, and a configurable number of hard-
ware slots are connected to the CPU over a shared bus in-
terface. Networking blocks executing in hardware are con-
figured into those slots, and all slots are connected with a
dedicated interconnect that offers line rate communication.
In hardware, packets are processed in a pipelined fashion.
The hardware/software interface is implemented as a com-
bination of shared memory and interrupts.

HW
slot

HW
slot

HW
slotPHY

line rate interconnect
FPGA

hw/sw interface

OS SW 
block

SW 
block…

executed on CPU

Fig. 1. Simplified node architecture.

3. ADAPTATION FREQUENCY

For the development of an adaptive system, it is crucial to
determine an adequate adaptation interval. The underly-
ing hardware limits the the maximum reconfiguration fre-
quency, and hence the minimum time between reconfigura-
tions, which can be computed as follows: if m is the time
required to transmit sensor data to the reconfiguration ap-
plication, c the time to compute the next hardware/software
mapping, si the state relocation time in block i, ri the recon-
figuration time for block i, and n the number of blocks, the
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total adaptation overhead A is then given by
A = m+ c+

∑n
i=1(si + ri).

Adaptation overhead should be a small fraction of over-
all processing time so that the system spends most time pro-
cessing traffic. We suggest limiting the adaptation overhead
to 1% of the overall processing time. Applying these guide-
lines to the architecture we presented in [3], we obtain a
maximum adaptation frequency of one adaptation per sec-
ond. On end nodes, where traffic is user-dependent, this
maximum frequency should be used so that the node re-
mains responsive to traffic peaks. However, on nodes pro-
cessing aggregated traffic (e.g., routers), a lower adaptation
frequency should be used, in order to cope with seasonal ef-
fects [4] or trends [5]. This adaptation frequency could be
set to one per hour.

4. ADAPTATION STRATEGIES

Regardless of the adaptation frequency, different strategies
can be applied for the actual adaptation algorithm. Those
strategies determine whether the actual traffic and/or learned
traffic characteristics are taken into account and determine
the actual optimization goal.

4.1. Traffic Dependent/Independent Algorithms

Traffic independent algorithms derive a mapping based only
on the static properties of the required networking blocks.
Such properties include the required FPGA area and mem-
ory footprint or the expected average benefit of a hardware
implementation. The mapping only changes when new pro-
tocols are loaded. Traffic dependent algorithms take the
actual traffic into account, e.g., by measurement of the num-
ber of packets and bytes processed by each block, the num-
ber of packets and bytes to be transmitted from hardware to
software, and the utilization or energy consumption of the
networking blocks.

4.2. Reactive versus Proactive Algorithms

A reactive algorithm makes an observation in time slot
t − 1, calculates an optimal mapping for this traffic distri-
bution and uses this mapping in time slot t. This approach is
especially useful for traffic changes introduced by a single
user where the protocol and traffic mixes depend on user be-
havior, and which usually contain long periods of inactivity.
However, we might also observe peaks in aggregated traffic,
e.g., for protocols that are rarely used such as IPSec in the
MAWI network [6].

A proactive algorithm changes the hardware/software
mapping before the traffic mix changes. This requires knowl-
edge from past traffic mix changes that can be applied to the
current situation. On end nodes this might be a regular pat-
tern for checking emails or storing a backup to a server. On

intermediate nodes this might be the variation of network
traffic that occurs on a daily basis.

We can distinguish between algorithms that know the pe-
riod and algorithms that learn the period. Algorithms that
know the period could assume for example that tomorrow’s
traffic will be much like today’s. This approach is particu-
larly useful for aggregated traffic.

End nodes may require a more sophisticated technique
such as the partial autocorrelation function (PACF). For a
given lag `, the PACF is the correlation of the traffic at time
t−` with the traffic at time t, considering possible linear de-
pendencies due to lesser lags; the significance level of this
autocorrelation, i.e., the probability that the observed corre-
lation will be this large by chance, can also be computed.

In Figure 2, a repetitive pattern is clearly visible for email
traffic on an end node. In periodic signals, the PACF will be
significant at lags that are multiples of the period: in the
PACF for this traffic trace, shown in Figure 2, the correla-
tions are higher then the dashed line at lags 60, 120, 180,
and 240 seconds (p = 10−4), suggesting a period of one
minute. Not surprisingly, the email client on the end node
checks for new emails every minute.

There are also significant (p = 0.05) negative autocor-
relations just before and after these large peaks. This means
that traffic just before and just after a peak is likely to be
much less, and resources required for handling the periodic
traffic can be freed up immediately after the peak.

In a similar analysis for a protocol without periodic traf-
fic, the PACF did not show any significant periods.
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Fig. 2. Partial autocorrelation of IMAP traffic, x is lag,
dashed line is significance level 10−4.

4.3. Optimization Goals

Regardless of its type, an algorithm will optimize the map-
ping for a certain goal. Typical goals are maximizing through-
put, minimizing energy, or providing sustainability (e.g., by
avoiding mappings that could damage the FPGA over time).
For the throughput optimization goal we can distinguish two
classes of algorithms.
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Maximisation of hardware benefits algorithms put tho-
se blocks into hardware that offer the largest benefit of exe-
cution in hardware when compared to execution in software.
It is assumed that the algorithm has access to information on
how long it takes to process a packet of a given size in soft-
ware and in hardware. For a traffic-independent mapping,
the blocks with the largest differences are put in hardware;
for a traffic dependent mapping, the differences are multi-
plied by the number and length of the actual packets.

Protocol graph partitioning algorithms minimize the
overhead introduced by transmitting packets between hard-
ware and software. Therefore, they only map connected sub-
graphs of the original protocol graph to hardware. One of
those blocks is the block that is physically connected to the
network interface. The subgraph mapped to hardware can
be selected based on several criteria. For example, we could
choose the subgraph with the aggregated largest difference
in execution time, or the one that minimizes the load on the
hardware/software boundary. Different hardware subgraphs
might introduce different loads due to the following reasons:

• one block is a firewall or an intrusion prevention sys-
tem that drops packets on purpose;

• one block offers routing, sending packets from the re-
ceive code path to the transmit code path;

• the packets are dropped due to buffer overflows and
hence this subgraph needs more resources.

5. EVALUATION

In order to experiment with different parameters of the un-
derlying hardware we have developed a simulator that can
process network traces and execute different algorithms on
these traces.

5.1. Simulator

The simulator models the whole system consisting of soft-
ware and hardware parts. Therefore it needs to simulate real
hardware parallelism. We have implemented the simulator
in SystemC [7] which is a set of C++ classes and macros
that allows the simulation of concurrent processes.

Our simulator models the system described in Section 2,
and consists of the following building blocks:

• a CPU, shared among all blocks executed in software;
• several hardware processing units, each capable of host-

ing a networking block;
• an interconnect between the hardware units, offering

line rate communication;
• a communication bus between hardware and software

with limited bandwidth;
• a monitoring framework that collects the number of

packets and bytes transmitted between the blocks;
• a hardware reconfiguration interface.

The simulator differs from the actual system as follows:

• Instead of receiving real network packets from a phys-
ical device, the simulator reads a captured packet trace.
For each packet the following information is stored:
packet id, arrival time, packet length, protocols. For
the packet trace generation we use packet traces cap-
tured by libpcap [8] or netsniff [9] that were converted
with the help of the pcap decoder provided by yaf [10].

• Since the packets only contain protocol information
but not the actual data, the blocks only specify a pro-
cessing time per packet (to simulate header process-
ing), a processing time per byte (to simulate payload
processing), a reply rate (to simulate reliable traffic)
and a drop rate (to simulate firewalls etc.).

• The monitoring framework can only obtain packet and
byte counters but no physical parameters such as FPGA
temperature or energy consumption.

• The reconfiguration overhead is not modelled.

5.2. Results

We have implemented four different mapping algorithms in
the simulator that was configured with three hardware slots.
To obtain a realistic protocol mix, packet length and packet
interarrival times, we captured a packet trace on a notebook
in a university network and included all packets that were ei-
ther broadcast packets or packets addressed to the collecting
node into the trace.

We have evaluated the following four algorithms:
• SW only: put only those elements in hardware that

do not have a software implementation. Put the others
into software.

• Maximum Benefit: put those elements into hardware
that benefit most from a hardware implementation (de-
pending on the number of packets and bytes processed).

• Minimum Bandwidth: minimize the number of pack-
ets to be sent from hardware to software.

• Hardware Cluster: put those blocks in hardware that
offer the best hardware benefit and that are connected
(in order to avoid sending packets unnecessarily be-
tween hardware and software).

We evaluated those algorithms in the following systems:
• Exp A. Ethernet is implemented in hardware only,

ARP, IPv4, and icmp are implemented in hardware
and in software, all the other protocols are implemented
in software only. There is no cost associated with
sending packets from hardware to software.

• Exp B. Additionally, TCP, UDP and tls get a hardware
implementation. There is no cost accociated with send-
ing packets from hardware to software.

• Exp C. Same as B, but now there is a cost for send-
ing packets between hardware and software, which is
proportional to the packet length.

Figure 3 shows one particular hardware/software map-
ping of the Maximum Benefit algorithm for the Exp B sce-
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nario. Nodes represent protocol blocks and edges represent
the number of packets sent between the blocks. The colored
nodes represent the nodes to be mapped to hardware.
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Fig. 3. One particular hardware/software mapping of the
Maximum Benefit algorithm for the Exp B scenario.

Table 1 shows the results of the four algorithms in the
three different scenarios. However, instead of looking at the
individual results, we focus on the differences between the
algorithms in the different scenarios.

For the SW Only and the Minimum Bandwidth algo-
rithm, the performance does only depend slightly on the
scenario. For the Maximum Benefit and the Hardware Clus-
ter algorithm, the performance increases significantly, when
more protocols have a hardware implementation. As ex-
pected, the Maximum Benefit algorithm offers the best per-
formance. When we introduce a cost for crossing the hard-
ware/software boundary the performance decreases again;
however, it decreases less for the Hardware Cluster algo-
rithm so that this algorithm offers now the best performance.

It is also interesting to see that the Hardware Cluster al-
gorithm requires about half the number of reconfigurations
than the Maximum Benefit algorithm. This is especially in-
teresting since in the actual hardware, reconfiguration re-
quires time, in which a slot cannot process packets.

From those results we learn that finding the most effi-
cient algorithm heavily depends on the actual parameters
and in a real live scenario probably a combination of the
different algorithms is required.

6. CONCLUSION AND FUTURE WORK

We have presented an application for self-awareness in re-
configurable computing systems, namely the mapping of net-
work protocols to either hardware or software. To this end
an adaptation algorithm is required that takes both network

Table 1. Performance Comparison
Exp A Exp B Exp C

SW Only Algorithm
different configurations 1 1 1
reconfigurations 0 0 0
packet drop rate 32.9 % 32.9 33.5%
Maximum Benefit Algorithm
different configurations 3 9 9
reconfigurations 41 2266 2271
packet drop rate 32.9% 2.7% 12.1%
Minimum Bandwidth Algorithm
different configurations 2 2 2
reconfigurations 1 1 1
packet drop rate 32.9% 32.9% 33.5%
Hardware Cluster Algorithm
different configurations 3 4 4
reconfigurations 39 1006 1006
packet drop rate 33.7% 4.8% 11.1%

traffic characteristics as well as hardware characteristics into
account. We have presented a first classification of such al-
gorithms and developed a simulator that can be used to ob-
tain initial performance results. As a next step we will de-
velop new algorithms for the hardware/software mapping.
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ABSTRACT 

Existing application domains exhibit variations in terms of 

complexity, performance and power consumption, 

whereas their efficient implementation onto general-

purpose FPGAs is not always a viable solution. In this 

paper we introduce a framework for designing self-aware 

reconfigurable platforms. Rather than similar approaches, 

our solution having a template of architectures, 

instantiates the most suitable FPGA platform at run-time, 

depending onto the application's requirements. 

Experimental results with various applications prove the 

effectiveness of such an approach, as compared to perform 

application mapping onto a conventional FPGA 

architecture. 

1. INTRODUCTION 

 

Reconfigurable platforms and more specifically Field-

Programmable Gate Arrays (FPGAs) have become the 

implementation medium for the vast majority of modern 

digital circuits. This make the FPGA paradigm to grow in 

importance, as there is a continuous demand towards 

faster, smaller, cheaper and lower-energy devices. 

 Apart from the flexibility introduced by reconfigurable 

architectures, usually such devices exhibit limitations 

posed by application’s inherent properties. For this 

purpose, FPGA vendors provide a variety of devices for 

each family, each of which has different properties (e.g. 

LUT size, number of LUTs per slice, amount of routing 

resources, etc), whereas the selection of proper FPGA 

device for a specific application becomes a challenging 

issue. Additionally, it is common that different 

applications, even from the same domain, might lead to 

considerable performance variations whenever they are 

mapped onto a single device. 

 In order to alleviate the problem of selecting the most 

suitable FPGA architecture for a given benchmark, 

throughout this paper we introduce a novel framework for 

designing self-aware reconfigurable platforms. The 

architectural properties of these platforms are tunable and 

customizable at run-time, depending on the constraints 

posed by the target application.  

 Different approaches have been used for determining 

the most suitable parameters for target FPGA. Among 

others brute force and simulated annealing are two 

candidate approaches, which are mostly applied at design 

time, due to their increased computational complexity. 

However, throughout this paper, we incorporate an 

approach with significant lower complexity, which is 

based on neural network.   

 A neural network is a massively parallel distributed 

processor made up of simple processing units, which has a 

natural propensity for storing experiential knowledge and 

making it available for use. Among others, neural 

networks provide non-linearity, are universal 

approximatiors (can approximate input–output functions 

to any desired degree of accuracy, given an adequate 

computational complexity) and they are adaptable 

(adjustable synaptic weights and network topology, can 

adapt to its operating environment and track statistical 

variations). 

 In contrast to relevant approaches aiming to perform 

architecture-level exploration with the usage of neural 

networks [1] [2], our framework instantiates also the 

derived (optimal) Virtual FPGA and then performs 

application implementation onto this platform under the 

selected design criteria. In order to support these tasks, 

apart from the introduced neural network, we incorporate 

also our former Virtual FPGA architectural [3], as well as 

the CAD flow for application mapping onto the target 

architecture [4] [8] [9]. 

 The paper is structured in the following manner: 

Section 2 describes the target architecture, whereas the 

proposed methodology for supporting the self-aware 

reconfigurable platforms is discussed in Section 3. 

Qualitative and quantitative results that prove the 

effectiveness of introduced solution can be found in 

Section 4. Finally, conclusions are summarized in Section 

5. 

2. TARGET ARCHITECTURE PLATFORM 

Fig. 1 gives an abstract view of our target platform 

consisted of multiple heterogeneous instantiations of 

Virtual FPGAs (V-FPGA), each of which is based on 

Xilinx Virtex devices. The term heterogeneous refer to the 
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possibility each of the employed Virtual FPGAs to have 

different properties. Typical parameters for differentiation 

are the size are the LUT size, number of LUTs per slice, 

number of routing channels, etc. By appropriately 

handling these parameters, it is possible to design either a 

high-performance, or low-power, FPGA platform. 

 Apart from the Virtual FPGA the target platform 

includes also a microprocessor core, a configuration 

controller, some of-chip memories and busses for on-chip 

communication and configuration. While the 

microprocessor is well suited for control oriented tasks 

and interfacing, the virtual FPGA cores add the advantage 

of efficient parallel data processing to the system. On-chip 

communication is realized by AMBA busses. The 

microprocessor can access the virtual FPGA cores by the 

AMBA APB bus, since each core acts as an APB slave. 

The microprocessor also communicates with the 

configuration controller by the AMBA APB bus. It 

specifies which configuration the configuration controller 

should load into a certain virtual FPGA core. All 

configurations are stored inside an external non-volatile 

memory. The configuration controller can access the 

memory controller by the AMBA AHB bus. This requires 

a bus arbiter as there are two masters on the AMBA AHB, 

the microprocessor and the configuration controller. 

Additional details about the architecture of Virtual FPGA 

can be found in [3]. 

 

 

 
Fig. 1: Schematic view of the system architecture [3]. 

 

 

The platform described in Fig. 1 was developed at 

generic VHDL and it is mapped onto logic cells within a 

physical FPGA board. Next section describes in detail the 

proposed methodology for supporting both the 

customization of these Virtual FPGAs at run-time based 

on the application’s requirements, as well as the 

application mapping onto the derived platforms with the 

usage of a Just-in-Time compilation framework. 

3. PROPOSED SOLUTION 

The proposed methodology for performing application 

mapping onto self-aware reconfigurable platforms is 

depicted in Fig. 2. As input to this framework we use the 

synthesized application’s description. 
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Fig. 2: Proposed methodology for supporting self-aware 

reconfigurable platforms 

 

 Whenever a new application has to be mapped onto 

the reconfigurable platform, the proper Virtual FPGA is 

instantiated. In order to derive the architecture’s 

parameters of this device, we profile the application’s 

netlist to extract a number of application-oriented 

parameters. For the scopes of this paper, the following 

parameters per benchmark are profiled: (i) number of 

nodes, (ii) number of edges, (iii) number of primary 

inputs/outputs, (iv) average and maximum fanout. 

 The profiling results provide a first estimate about the 

desired architecture for the target FPGA device. Different 

approaches might be used in order to appropriately fuse 

these results (e.g. brute force, simulated annealing, genetic 

algorithms, etc). However, all of them impose 

mentionable run-time overhead, which is not affordable 
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especially for systems that have to be executed at run-

time. 

 For this purpose, our methodology incorporates a fast 

yet accurate multi-objective optimization technique based 

on neural network. A neural network is a system that 

learns to map a function from an input vector to an output 

vector. It consists on a set of simple units which are called 

artificial neurons. Each neuron has an internal state which 

depends on its own input vector. From this state the 

neuron maps an output that is sent to other units through 

parallel connections. Each connection has a synaptic 

weight that multiplies the signal travelling through it. So, 

the final output of the network is a function of the inputs 

and the synaptic weights of the neural network. 

 Such a neural network with enough elements, called 

neurons, can fit any data with arbitrary accuracy. The 

outcome from neural network is the most suitable 

architectural parameters in terms of LUT size, number of 

LUTs per slice, number of routing channels, etc. These 

parameters are handled by our framework in order to 

automatically instantiate the desired Virtual FPGA 

platform. The key differentiation of this solution, as 

compared to the rest approaches discussed previously, 

affects the significant lower run-time overhead for 

deriving architectural parameters of target Virtual FPGA. 

 A critical task for deriving this optimized architecture 

affects the proper training of neural network with a 

representative set of benchmarks. For this purpose, at 

design-time, we trained the employed neural network with 

a variety of applications from different benchmark suites 

(MCNC, LGSynth93, QUIP). Hence, we can almost 

safely guarantee that the architectural properties derived 

from our solution are close enough to the optimum device 

FPGA. 

 Then, we perform technology mapping, placement and 

routing (P&R) with the usage of proposed JIT compilation 

framework. Since a number of additional tasks might be 

already mapped onto the reconfiguration device, our JIT 

framework preserves that application’s functionalities are 

mapped onto available (empty) hardware resources.  

Having as input our framework this information, JIT can 

perform task implementation (P&R) only with non-

utilized resources.  

 We have to mention that our Virtual FPGA enables 

such a fine-grain reconfiguration (e.g. routing wires and/or 

logic blocks inside a single slice). Additionally, it supports 

a read-back technique for retrieving the current state of 

configuration data. 

 The outcome from JIT framework contains all the 

necessary information in order to compute (i) the partial 

bitstream file for the new task and (ii) the resources over 

the target architecture where this task has to be allocated.  

Finally, the computed bitstream file configures the Virtual 

FPGA with the new task. Additional details about how we 

apply this technique can be found in [3] [6] [7].  

 The task of customizing Virtual FPGA and generating 

the properly partial reconfiguration data with the usage of 

JIT framework is software-supported by an open-source 

toolset, named 2-D MEANDER [8] [9].  Even though one 

might expect that running technology mapping and 

application’s P&R will introduce mentionable overheads 

in execution time and the quality of derived results, we 

have appropriately tuned these tools in order to improve 

significantly the run-time overhead without penalties in 

terms of maximum operation frequency and power 

consumption, since it is possible to be executed 

sufficiently even at the embedded processor. Additionally, 

the JIT framework is expected to introduce the minimum 

possible fragmentation, since it does not require 

contiguous area of empty (non-utilized) hardware 

resources. 

4. EXPERIMENTAL RESULTS 

For exploration purposes, the employed neural network 

was modeled in Matlab, whereas after determining the 

optimal parameters for training (e.g. number of neurons), 

the network was also developed in C++. This allows 

integrating the developed network with our MEANDER 

design framework (depicted in Fig.2). 

A critical parameter that affects the efficiency of 

designed neural network is the regression. Fig. 3 

summarizes the metrics of this parameter, as we vary the 

number of hidden neurons and epochs (determine the 

maximum number of iterations for training).  

 
 

 
Fig. 3: Exploration results for designing neural network 
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Based on this graph, we can conclude that 

mentionable variation in this parameter is possible among 

the alternative solutions. This also imposes that in order 

to design an efficient neural network, careful study is 

required for determining both the number of epochs, as 

well as the hidden neurons. Specifically, from our 

exhaustive exploration depicted in Fig. 3, we found that 

the optimal solution retrieves whenever the number of 

epochs and hidden neurons are set equal to 12 and 7, 

respectively.  

Another important parameter that quantifies the 

efficiency of the derived neural network affects its error. 

This parameter is computed by finding the error between 

the network’s output and the target value over all the 

example pairs (targets - outputs). 

The output of this analysis is summarized in Fig. 4. 

Specifically, this figure plots the error histogram for the 

selected neural network. The red color lines denote the 

optimal solution retrieved after brute-force exploration. 

Regarding our experimental setup, we performed almost 

200,000 runs of VPR tool [5] for deriving the results 

marked with red color. 

 

 
Fig. 4: Error histogram for the employed neural network. 

 

 

Based on Fig. 4, we can conclude that our proposed 

network leads to considerable lower execution time 

compared to the brute-force approach, with an almost 

negligible penalty in selections of architectural 

parameters. 

Note that due to lack of space, the results in this paper 

affect only the minimization of Power×Delay product. 

However, apart from this experimental setup, we have 

already retrieved the corresponding training data for 

delay, power, area, or any potential combination among 

them. 

5. CONCLUSION 

A framework for supporting application mapping onto 

self-aware reconfigurable platforms was proposed. The 

introduced solution based on neural networks can achieve 

sufficient tuning of architectural parameters under delay, 

power and area metrics. 
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1. INTRODUCTION

This work describes the identification of designs that benefit
from a Dynamic Circuit Specialization (DCS) implementa-
tion on FPGAs. In DCS, the circuit is specialized for slowly
changing inputs, called parameters. For certain applications
or cores, a DCS implementation is faster and smaller than
the original implementation. DCS implementations can ben-
efit from the possibility in modern FPGAs to reconfigure
specific configuration bits at run-time. This means DCS can
be used to specialize an FPGA circuit during the run-time of
the FPGA.

Initially, in DCS, it is assumed that the parameters are
constant. Constant propagation then allows the specializa-
tion of the circuit by partially evaluating the circuit. This
specialized circuit is smaller and faster than the original cir-
cuit but is only correct for one specific parameter value. Of
course, the parameters will not stay constant for ever, even-
tually they will change. This is solved using the run-time re-
configuration capabilities of the FPGA. A DCS system has
both an FPGA and a configuration manager. The configu-
ration manager is responsible for generating the specialized
circuit and reconfiguring the FPGA.

In an implemented DCS system, the FPGA contains a
specialized circuit for the current parameter value. The FPGA
is working normally until the value of a parameter changes.
Using the new parameter value, a new specialized circuit is
generated by the configuration manager and the FPGA is
reconfigured with this new circuit. During this process the
FPGA is halted. Once the reconfiguration has finished, the
FPGA is working normally again. Until the next parame-
ter change, then the specialization process starts over. The
time and resources needed to generate the new circuit and to
reconfigure the FPGA are overheads DCS introduces. The
time of one specialization is called the single specialization
overhead.

Such a DCS system could be implemented in multiple
ways. In [1] an efficient method for DCS, developed by
Ghent University, is described. It includes an FPGA tool
flow adapted for DCS, which will be used in the following

sections. For the moment, it only implements the reconfig-
uration of LUT truth tables, and not the routing infrastruc-
ture. Only a select number of LUTs are run-time reconfig-
ured, these LUTS are called TLUTs.

Previous papers have shown that this method for DCS
can achieve significant area reductions in a number of hard-
ware designs. In [1], an adaptive 16-TAP FIR-filter is imple-
mented using 56% less area. It uses only 1301 LUTs, while
the size of the original implementation was 2999 LUTs. The
resulting DCS implementation is also 27% faster than the
original implementation. The single specialisation overhead
is 166µs. This is the design used for the profiler run-time
measurements in Section 3. The results for larger FIR-filters
are similar. The same publication also shows a 66% LUT re-
duction for Ternary Content-Addressable Memories. Both
of these results, and the adapted FPGA tool flow, were ver-
ified by building these DCS implementations on an actual
FPGA, the Xilinx Virtex II Pro.

[2] shows that a number of key-based encryption algo-
rithms also see a significant area reduction, 20.6% for AES.
27.8% for Triple DES and a 72.7% reduction for the rc6-
algorithm. Finally, in [3] this method for DCS is shown
to achieve similar results as hand-crafted run-time recon-
figurable implementations of a Network Intrusion Detection
System (NIDS). This paper also presents improvements to
make the NIDS implementation fully run-time reconfigurable,
using this DCS method.

In this paper, we present a profiling tool to aid the de-
signer in analysing the feasibility of a DCS implementation
(Section 3). It automatically provides a functional density
estimate (see Section 2) for the most interesting DCS imple-
mentations.

2. DCS IDENTIFICATION OF A DESIGN

Determining whether or not a certain design will benefit
from a DCS implementation is a difficult task for the de-
signer. First, it requires the designer to be familiar with the
exact DCS-method. Secondly, in order to find a good pa-
rameter selection, insight into the dynamic behaviour of the
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signals in the design is required. This is typically not some-
thing that is important in the normal design process. In ad-
dition, there are no tools that allow the designer to analyse
the dynamic behaviour of large groups of signals. VHDL
and Verilog Simlators do exist, but they focus on verifying
the behaviour of a limited number of signals. Even after the
parameter selection it is very difficult to predict the gains of
a DCS implementation without actually implementing it. To
solve this problem, we first decided on a metric that allows
an easier comparison between implementations. This met-
ric is the functional density, and is explained in detail below.
The next section presents a profiler that uses this metric to
automatically analyse an existing implementation.

To identify designs that benefit from DCS, different im-
plementations of the design have to be compared. A good
measure for this comparison is the functional density (FD) [4].
It is the number of computations per unit of area and per unit
of time (Equation 1). TFPGA is the complete execution time
of the FPGA. N is the number of operations, and AFPGA is
the number of LUTs in the implementation.

FDDCS =
N

AFPGA × TFPGA
(1)

The number of operations, N , can always be expressed
as the number of clock cycles times a correction factor (C).
In the case of the FIR-filter, where one input sample is pro-
cessed every clock cycle, N can be redefined as exactly the
number of clock cycles.

DCS implementations where the benefits are high will
occupy less area and therefore have a higher FD. On the
other hand, if DCS introduces a large time overhead, the
total execution time will increase, while the number of op-
erations stays the same, leading to a lower FD. A design
benefits from DCS if a DCS implementation with a higher
FD that the original implementation can be found.

In the DCS implementation a number of signals will be
selected as parameters. We call this the parameter set. The
most exhaustive way to find the best DCS-implementation is
to calculate the FD for all possible parameter sets. However,
this would take a prohibitively long time, because (i) the
number of signals in complex designs is very high and (ii)
calculating the FD itself requires up to hours for complex
designs.

To address (i), the most interesting parameters for DCS
are identified based on Equation 2. This equation expresses
the FD as a function of the average single specialization
overhead (T̂SST ) and the average time the FPGA is work-
ing for a single parameter value (T̂FPGA).

FDDCS =
1

T̂SST

T̂FPGA
+ 1

N

AFPGA × TFPGA
(2)

The first part of Equation 2 expresses the degradation of
the FD, caused by the single specialization overhead. It is

clear that the degradation will be small if the single special-
ization time is much smaller than the average time for each
parameter value. The influence of the degradation can be
seen clearly in Figure 1. This figure shows how the func-
tional density is dependent on the average time between pa-
rameter changes (T̂FPGA). Looking more closely at the first
part of Equation 2, this means only signals for which T̂SST

is (much) smaller than T̂FPGA will have a low degradation.
In other words, only signals for which the time between tran-
sitions (T̂FPGA) is much longer that the overhead for a sin-
gle reconfiguration (T̂SST ) are interesting parameter candi-
dates. To reduce the number of signals under consideration,
signals for which T̂SST is larger than T̂FPGA are ignored.
A good value for T̂SST is discussed in Section 3.
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density of a generic implementation.

As for (ii, the long time needed to calculate the FD), the
FD has to be determined for each of the remaining param-
eter candidates. Calculating the FD exactly requires run-
ning the full FPGA tool flow, which can take hours for com-
plex designs [5]. Most time is spent in the last two steps,
placement and routing. In addition, both of these steps scale
very badly with increasing circuit size, since both are NP-
complete problems.

However, the FD can also be estimated, before place-
ment and routing. For this estimation, Equation 3, a rewrit-
ten version of Equation 2, is used. Where, T̂O is the average
time between parameter changes in the original implementa-
tion. T 1

DCS and T 1
O are the clock periods of the DCS and the

original implementation, respectively. All these variables
can be estimated based on the FPGA tool flow before place-
ment and routing. A more detailed discussion in Section 3.

FDDCS =
C

T̂SST

T̂O
T1
DCS
T1
O

+ 1

1

AFPGA × T 1
DCS

(3)
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3. PROFILER

To help the designer analyse the different DCS implementa-
tions of designs based on the FD metric, an automatic pro-
filing tool was developed. It requires an RTL description of
the design and a test bench with realistic input data. The
profiler uses a two-step approach. In the first step a number
of parameter candidates are selected from all the signals in
the design. In the second step, the functional density is esti-
mated for each of those candidates. Both steps are discussed
in more detail below.

Selecting the parmeter candidates: First, the profiler
runs the test bench through a simulator to gather data on the
dynamic behaviour of all signals. This data is then analysed
in order to remove all signals for which T̂O is smaller than
the chosen T̂SST . This is the criterion explained in the pre-
vious section. However, because the exact overhead of the
DCS-implementation is not known yet, a minimal value for
T̂SST was chosen. This minimal T̂SST is the time needed
to run-time reconfigure one single LUT. This removes all
the signals that have a large FD degradation even with the
smallest possible overhead. All the remaining signals, the
parameter candidates, are given to the next step of the pro-
filer, which will estimate the FD for each candidate.

Functional Density estimate: This FD estimate is based
on Equation 3. Here, T̂O is collected from the analysis of the
dynamic signal behaviour in the previous step. All the other
variables (AFPGA, T̂SST ,T 1

DCS and T 1
O ) are collected by

running an abbreviated FPGA tool flow for DCS [1], without
placement and routing. This flow is run for each parameter
candidate. After this flow has finished, AFPGA is known
exactly and T̂SST , T 1

DCS and T 1
O can be estimated. The

details of these estimates are discussed below.

3.1. Single Specialization Time (T̂SST )

The single specialization time is the run-time overhead in-
troduced by DCS. It has two parts: the time needed for gen-
erating a new circuit (Tgeneration) and the time needed for
the actual reconfiguration of the FPGA (Treconfiguration).

The FPGA tool flow presented in [1] uses Boolean func-
tions to express how the TLUT truth tables are dependent
on the parameter values. The new circuit is generated by
evaluating these Boolean functions for the new parameter
values. This generation time is estimated using the number
of Boolean operations (BoolOps) and the chosen compu-
tation unit (K). K represents the average total overhead of
one Boolean operation. It is determined by running the com-
plete run-time reconfiguration flow for a large design multi-
ple times, while each time measuring only the time required
for the Boolean evaluation.

Tgeneration = BoolOps×K (4)

This computation unit is generally also the configuration
manager. A good option is the embedded CPU in a lot of
modern FPGAs. For the Xilinx Virtex II Pro FPGA, this is
the PowerPC 405. In that case, K is 3.32 clock cycles.

The reconfiguration time is dependent on the chosen re-
configuration method. [1] proposes two methods, one method
using the HWICAP and one using the Shift Register LUT
(SRL) capability of Xilinx FPGA’s.

The HWICAP is the standard configuration interface pro-
vided by Xilinx. In this case, the FPGA is reconfigured
frame by frame. To estimate the reconfiguration time we
estimate number of frames that needs to be reconfigured, as-
suming the TLUTs are spread out randomly over the total
number of LUTs. The reconfiguration time is then Equation
5. For the Virtex II Pro, a single frame is reconfigured in
98.23 µs.

THWICAP
reconfiguration = E[#frames]× Tframe (5)

The second method for run-time reconfiguration uses
the Shift-Register LUT capabilities, present in some modern
FPGAs. This allows the TLUTs to be combined in one or
more shift registers chains. This method of reconfiguration
is much faster because each chain can be reconfigured in
parallel and only the actual truth table bits are sent. A HW-
ICAP frame carries a lot more overhead. The SRL chains
are clocked at the design speed. For the above information,
the reconfiguration time using SRLs can be estimated easily.
It uses the number of TLUTS, the number of chains and the
clock speed of the DCS implementation (Equation 6).

TSRL
reconfiguration =

#TLUTS × 16× T 1
DCS

#chains
(6)

3.2. Clock periods (T 1
DCS ,T 1

O)

The clock periods, T 1
DCS , of the DCS implementation, and

T 1
O, of the original implementation, are estimated by the

number of LUTs in the longest path of the mapping result
of each implementation. This depth is then multiplied with
a worst-case estimate of one complete LUT delay for the
target FPGA. To get the complete clock period estimation a
pre and post delay are added. It is assumed that the longest
path will be from FF to FF, not from I/O Block to I/O Block.
For the Virtex II Pro, the LUT gate delay is 0.275 ns and the
LUT net delay is 0.575. The pre and post delays are 0.886
ns and 0.208 ns respectively.

T 1
estimate = Tpre + depth× TLUTdelay + Tpost (7)
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3.3. Profiling time

Using FD estimates instead of exact FD calculations, re-
duces the execution time of the profiler significantly. As
discussed earlier, the most time intensive parts of the FPGA
tool flow are the placement and the routing [5]. Both of
these steps are avoided by using the estimates. The impact
of using the estimates is shown in the execution time mea-
surements described below. These experiments were done
for a Virtex II Pro (xc2vp30-7ff1152), the profiler was run
on a computer with 8 GBs of RAM and an Intel Core2 Quad
Q9650 (3GHz, 1333MHz, 12MB).

Two adaptive FIR filters, a 16 TAP and a 32 TAP ver-
sion, and corresponding test benches were analysed by the
profiler. The profiler was run two times for each FIR fil-
ter, one run used the FD estimates, the other the exact FD
calculation. In each case the execution time for each param-
eter candidate was measured. We will discuss the average
execution time per parameter candidates for all cases.

Table 1. The average execution time for one parameter can-
didate

FD Estimate Exact FD
16 TAP filter 36.12 s 107.12 s
32 TAP filter 41.67 s 248.10 s

The FD estimate for one parameter candidate in a 16
TAP adaptive FIR filter requires 36.12 seconds. Calculating
the FD exactly instead of estimating it requires an extra 71
seconds. In that case, the total analysis time for this filter
would increase from 10.23 minutes to 30.35 minutes. This
extra time is the time needed for the placement and the rout-
ing of the design.

In addition, because the placement is an NP-complete
problem, it scales badly with increasing circuit size [5]. E.g.
for a 32 TAP adaptive FIR filter, the time needed for the
exact calculation of the FD is already 248.10 seconds for
each parameter candidate, while estimating the FD still only
requires 41.67 seconds, a difference of 206.43 seconds. So,
even though the size of the circuit has only doubled, the time
for placement and routing has increased by 2.9x. The 32
TAP adaptive FIR filter still only uses 15% of the Virtex
II Pro area. This effect will be even more pronounced in
designs that use a larger FPGA area.

We are currently preparing an extensive discussion on
the accuracy of the FD estimates. However, it is already
clear that if the FD estimates predict a significant gain, then
the exact, calculated, FDs will also show a significant gain.

4. CONCLUSION

This paper shows how to identify designs that benefit from
DCS implementations, using the functional density (FD) as
a metric. In addition, a profiler that implements this metric is
presented. It automatically analyses the quality of the most
interesting DCS implementations of a given design. This
allows the designer to determine more easily whether a cer-
tain core benefits from a DCS implementation or not. To
reduce the execution time of the profiler an FD estimate is
used instead of an exact calculation.

This profiler is the first step towards a completely au-
tomatic tool flow for DCS. This flow would allow the im-
plementation of DCS systems without any intervention of
the designer. Additionally, self-aware reconfigurable sys-
tems could also use this automatic flow to analyse their own
dynamic behaviour, which could lead to optimal DCS im-
plementations. Off course, this kind of flow would, most
probably, require running the full FPGA tool flow at run-
time. A process which can take up to hours for complex
systems. However, dependent on the practical implementa-
tion of these self aware systems, this kind of elaborate self-
analysis would only be done very infrequently.
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ABSTRACT

This paper introduces a novel adaptive method applicable
to all algorithms based on finite difference method. The al-
gorithm is tuned adaptively and incrementally in terms of
data presentation and computation structure. Computational
accuracy is dynamically predicted and controlled, and hard-
ware resource consumption is analysed to explore run-time
potential of target applications. The design flow involves
algorithm update, precision estimation, hardware analysis,
runtime scheduling and dynamic learning.

1. INTRODUCTION

Run-time reconfigurability of reconfigurable systems is ca-
pable is tuning applications while running. By optimising
hardware implementations according to specific requirements
during run-time, the performance of reconfigurable systems
can be pushed forward. Effective as the technique is, exist-
ing algorithms and applications tend to be static, and current
runtime reconfiguration methods are limited to applications
with varying properties [1, 2].

Bit-level optimisation works as an important design tech-
nique in the field of reconfigurable computing. By customis-
ing the data presentation to algorithm characteristics and
user requirements, significant area saving can be achieved,
which in turn improves system concurrency and thus in-
creases system throughput. Existing tools to perform bit-
level optimisation are limited to either static precision anal-
yses [3, 4, 5] or Monte-Carlo methods [6]. The concept of
run-time reconfiguration is missing from current tools.

In this paper, we aim to introduce an approach to dy-
namically tune algorithms based on finite difference method.
Our approach actively generates runtime design space from
target algorithms, and the error propagation is dynamically
controlled.

The major contributions of this work include:

- An adaptive approach to control computational error
due to reduced data presentation. Instead of passively

estimated, the error propagation is actively controlled
by tuning the parameters.

- A novel methodology to turn static algorithms into
dynamic implementations. The runtime properties of
algorithms and reconfigurability of systems are ex-
plored to adaptively improve system performance.

2. BACKGROUND

2.1. Precision Analysis

As a FPGA-exclusive optimisation technique, bit-width op-
timisation has been widely used in the field of custom com-
puting. Various algorithm presentations and precision anal-
ysis methods were proposed to generate circuits with guar-
anteed accuracy [3, 4, 5]. These work depend on passive
analyse of the target algorithms, the capacity of tuning data
presentation during runtime is not explored. A runtime com-
pensation method was proposed in [6]. However, this method
is limited to Monte-Carlo methods, where error is bounded
within one path and only the final result matters.

2.2. Runtime Reconfiguration

Runtime reconfiguration is an emerging area to improve sys-
tem performance during runtime. Given runtime informa-
tion is properly utilised, the implemented operators can be
further optimised during specific time slots. The slowly
varying properties of input data were captured in [1] to im-
plement arithmetic operators with constant input. The al-
gorithm parameters were dynamically approximated to op-
timal constants for the operators in [2], to further reduce
the upper bound of implemented operators. Besides cus-
tomising implementations, the tuning process also impacts
the computational precision. However, the interactions have
not been explored.
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2.3. Finite Difference Method

Finite difference method is a widely used numerical
method to approximate solutions to differential equations.
The approximation error depends on the step size and the
approximation order.

∂u2(a)

∂x2
≈ α · u(a − x) + β · u(a) + γ · u(a + x)

x2
(1)

This static approximation process can be dynamically ac-
complished, with coefficients actively varied. The potential
benefits include reduced computational effort, as well as op-
portunity to dynamically tune the algorithm.

3. MOTIVATION

The run-time potential of application depends the varieties
of the application in time dimension. Previous work are lim-
ited to applications [7, 8, 9, 10] with varying properties. The
proposed approach exploit the run-time potential of applica-
tions by actively tuning application configurations. Our aim
is to show that, with proper run-time design methods, appli-
cations with static properties can explore reconfigurability
to improve system

The explored properties in current approach include data
presentation and constant coefficients. The data presentation
involves achieving optimal bit-width optimisation for arith-
metic operations, while varied coefficients impact resource
usage and error propagation. The interaction between the
updated properties and system performance is formulated to
incrementally tune the target applications.

In reconfigurable computing, data presentation refers to
bit-width optimisation. The data are presented in customised
formats to reduce resource consumption. As a consequence,
generated results differ from the results of original presen-
tation. If the original results are assumed as accurate, inac-
curacy is introduced at the time when data presentation is
varied, and propagates through the computational space, as
shown in Figure 1. By dynamically introducing and com-
pensating variable inaccuracy in different time slots, an op-
timal run-time data presentation can be achieved.

Besides data presentation, algorithm optimisation dur-
ing run-time involves reconstructing the target algorithms
according to dynamic requirements of applications. Figure2
demonstrates the structure of a one-dimensional finite differ-
ence method. Propagation of generated results between time
steps can be dynamically controlled, by varying the mapping
constant. For algorithms based on finite difference method,
coefficients are decided by approximation orderO, stencil
sizeS, step size in timedt and step size in spaceds. The
computational process for a one-dimensional finite differ-
ence method is shown in Figure 2.

(α, β, γ...) ⇐ f(O, S, dt, ds) (2)

α

β

γ

α

β

γ

u(a−x,t+1)

u(a+x,t+1) u(a+x,t−1)

u(a,t−1)

u(a−x,t−1)

u(a,t+1)

u(a+x,t+1)

u(a,t+1)

u(a−x,t+1)

dt dt

ds

ds

Fig. 2. Structure of one-dimensional finite difference
method in time.

With dynamic data presentation and algorithm structures
in different time steps, the target algorithms can be dynami-
cally tuned.

4. ADAPTIVE APPROACH

The proposed approach is presented in Figure 3. It works
as an iterative method to adapt the target algorithm into dy-
namically optimised operators. The algorithm is constantly
tuned as computation goes through involved grid space.
Tuned coefficients are fed into a precision estimator to pre-
dict accumulated errors. The precision model analyses ac-
curacy of the specific data presentation and constant values,
while the hardware model calculates resource usage of the
configuration. Two analytical models cooperate to estimate
the benefit of possible reconfiguration opportunities. Tar-
get accuracy and available hardware resource work as con-
straints for possible configurations.

The error for a specific point accumulates from neigh-
bouring points in space and previous calculations in time.
Affine Arithmetic [11] (AA) was proposed to estimate the
computation range and precision. It can be used here to es-
timate the dynamic precision.

xre = x + 2−MA−1 · λ, λ ∈ [−1, 1] (3)

Ei = 2−MAi−1 · λi (4)

Ej,t =
n∑

i=0

λ<i,t−1> · E<i,t−1> (5)

wherexre denotes the data presented with reduced preci-
sion, andMA is the mantissa size. Computation error in-
troduced in a specific time step is expressed asEi, while the
error propagation is formulated as Eq 5.Ei is estimated with
data presentation, and the propagation is controlled with dy-
namic constants. Therefore, the impacts of varied algorithm
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Fig. 1. Error propagation in computation space and time.

on computation accuracy can be adaptively predicted.
The hardware analytical model is built to capture the dy-

namic optimisation opportunities as design configurations
are mapped onto reconfigurable fabrics. Bit-width optimi-
sation impacts resource usage of arithmetic operations lin-
early. In the meanwhile, the varied constants construct the
upper bound of resource usage. As resource consumption
goes down with data presentation, system performance can
be increased after a reconfiguration operation. For a recon-
figurable area with upper bound resource consumption, mul-
tiple time steps can be mapped into it with reduced data pre-
sentation. As shown in Figure 2, the two time steps can be
accomplished with data streamed one time, given the avail-
able resource can accommodate the dynamically optimised
circuits.

maximum
error

available
resources

implementation

learning algorithm

precision prediction hardware analyses

algorithm updates

predicted errors resource consumption
reconfiguration overhead

tuned coefficients tuned coefficients

runtime scheduler

runtime tuning flow
parameters updates

Fig. 3. Tuning process of the proposed approach.

Analysed data are fed into a runtime scheduler to decide
whether the current configuration needs to be reconfigured.
For the implemented circuits, data are sampled back into a
learning algorithm to update module parameters, closing the
tuning process.

5. CONCLUSION

In this paper, we present an adaptive approach to explore
runtime properties of algorithms based on finite difference
method. The computational error is dynamically controlled

and the arithmetic operators are adaptively optimised. Work
in progress and future work include expanding modules in
the turning process, exploring more runtime properties and
building various applications to evaluate the proposed ap-
proach.
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ABSTRACT

Dynamic Partial Reconfiguration (DPR) can be used on
Xilinx FPGA devices (by using the internal ICAP unit) to
increase the processing performance during run-time and
to reduce the hardware cost requirements of a specific sys-
tem. This paper presents a dynamically self-reconfigurable
VLIW-SIMD soft-processor architecture, that takes advan-
tage of the fast reconfiguration of small functional units (FU)
instead of hardware accelerators. The proposed soft-proces-
sor implements a DMA-ICAP controller to control the dy-
namic reconfiguration process of its reconfigurable FUs. The
implementation of this DMA-ICAP controller together with
the software program control are the main topic of this pa-
per. For video-based processing algorithms running under
real-time conditions (i.e., 30fps), specialized FUs with equiv-
alent hardware cost of a typical 64-bit SIMD-arithmetic unit
can sequentially be reconfigured up to 720 times per frame.
Therefore, the use of reconfigurable specialized FUs allows
a fine-grained acceleration of intra-frame processing tasks.

1. INTRODUCTION

Over the past years, embedded systems have expanded to
cover a wide variety of applications, ranging from portable
multimedia devices to sensor networks and medical imag-
ing systems. Stringent computing performance and power-
consumption requirements in combination with the increas-
ing demand for low cost and time-to-market products make
the research field of embedded systems challenging.

In order to meet the mentioned design goals, special-
ization is required. This can be done by inserting special in-
structions to a processor or by implementing dedicated hard-
ware macros. One implementation form, which is frequently
used, is an application specific integrated circuit (ASIC).
Unfortunately, the functionality, flexibility and processing
performance of the resulting ASIC remain fixed after the
production. This means that in order to adapt these architec-
tures to future changes, the architecture eventually must be
physically re-implemented, resulting in long time-to-market
and high production costs.

Instead of implementing ”static” ASICs, the TUKUTU-
RI project at the Institute of Microelectronic Systems studies
the use of reconfigurable devices to avoid the necessity of
completely re-implementing the embedded multimedia pro-
cessing system physically every time a new enhanced func-
tionality is required. Therefore, dynamic partial reconfig-
uration (DPR) [1] is used. DPR is provided by commer-
cial Xilinx FPGA devices and can be used to specialize the
instruction-set and some parts of the architecture to effi-
ciently execute any kind of multimedia tasks. The time re-
quired to reconfigure a specific region of an FPGA directly
depends on the size of this region and highly influences the
reachable processing performance. For example, in video-
based processing algorithms like those used in driver assis-
tance systems [2] (depending on the required reconfigura-
tion time) DPR can be used during inter- or/and intra-frame
processing. A usual real-time constraint in this kind of sys-
tems is to process at least 25 frames per second (fps), i.e.,
one frame in less than 40 ms.

Most of the publications, concerning DPR, proposed ar-
chitectures based on reconfigurable hardware accelerators
attached to an OCP bus, which can only be used for inter-
frame processing acceleration [1]. Only the hardware demon-
strator presented in [2] can perform at least two reconfigura-
tions of sequentially working hardware accelerators within
40 ms, allowing intra-frame processing. In order to effi-
ciently accelerate intra-frame processing, the size of thehard-
ware accelerators should be reduced to enable a speed-up of
the reconfiguration process.

This paper presents a reconfigurable VLIW-SIMD soft-
processor architecture that can dynamically self-reconfigure
the data-path instead of hardware accelerators, performing
fine-grain acceleration at the application program code exe-
cution level. Section 2 introduces the generic VLIW-SIMD
soft-processor architecture, called TUKUTURI. The DMA-
ICAP controller used for dynamic partial reconfiguration is
described in Section 3. In Section 4, an evaluation of the
time required to reconfigure different examples of functional
units is presented. Finally, conclusions are presented in Sec-
tion 5.
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Fig. 1. Simplified pipeline scheme of the generic SIMD-
VLIW processor architecture (TUKUTURI). The blue
shaded areas identify the proposed reconfigurable hardware
elements.

2. A GENERIC VLIW-SIMD SOFT-PROCESSOR
ARCHITECTURE

In previous works carried out at the Institute of Microelec-
tronic Systems in the research project RAPANUI [3], a com-
prehensive analysis of the architectural design alternatives
of application-specific VLIW-SIMD processors for multi-
media applications was performed. For that, a comprehen-
sive design space exploration environment based on a generic
VLIW-SIMD architecture template was implemented. This
environment includes a configurable pipeline architecture
simulator, an enhanced assembly code compiler, and a pa-
rameterized VHDL implementation of the architecture tem-
plate. By using this environment, the architecture template
can be optimized in terms of performance and hardware cost
for a set of multimedia applications. The RAPANUI project
has demonstrated that the combination of new enhanced hard-
ware architecture mechanisms and the corresponding assem-
bly code compiler improvements plays an important role to
overcome the architectural bottlenecks.

In this work, a new soft-processor architecture, called
TUKUTURI (see Figure 1), is proposed based on the men-
tioned VLIW-SIMD template. The novelty lays in the use
of a commercial FPGA device as the destination target plat-
form. The generic VLIW-SIMD processor template was
specially designed for efficient processing of macroblocks,
commonly used in video coding algorithms, and comprises

a flexible data-path controlled by a dual issue-slot VLIW.
The control-path is initially divided into 5 basic pipeline
stages, but the number of execution stages can be modified
to increase the operation clock frequency, since the criti-
cal path is located in these stages (when implementing the
VLIW-SIMD processor design on a Virtex-5 FPGA). All
the SIMD-FUs internally work with 64-bit wide operands,
which can be split up to perform the same operation with
different data sizes. Finally, it is worth mentioning that the
implementation of a basic TUKUTURI configuration based
on 5 pipeline stages on a Virtex-5 FPGA can reach more
than 100 MHz.

A two-level (re-)configuration strategy is implemented
to efficiently use the FPGA resources. First, the TUKU-
TURI architecture can be optimized to efficiently process a
particular application, taking into account the optimal size
and number of reconfigurable FUs and reconfigurable co-
processor units. Therefore, every time this application is
about to be executed, astatic reconfiguration processis per-
formed, programming the whole or a part of the FPGA de-
vice before starting the application execution. This levelof
reconfiguration allows to reuse the system for future applica-
tions with totally different processing characteristics,allow-
ing to adapt the complete TUKUTURI architecture to a new
application. This mechanism introduces a significant time
penalty during run-time, because of the time required to re-
configure those FPGA partitions or the whole FPGA (e.g.,
a VIRTEX-5 LX330 requires up to 26 ms to be completely
reconfigured) and also because of the static reconfiguration
(i.e., no computation can be performed on the FPGA dur-
ing the reconfiguration process). However, the optimization
of the TUKUTUTI soft-processor on the architectural level
(e.g., number of RFU or static FUs, ...) can significantly
increase the processing performance.

Second,dynamic partial reconfigurationis also sup-
ported to insert in run-time new complex instructions or co-
processors in the architecture. The proposed RFUs are high-
ly coupled to the pipeline structure of the TUKUTURI ar-
chitecture, benefiting from the data forwarding-path. The
effective use of the forwarding mechanism is crucial for in-
creasing the reachable processing performance. Dynamic
reconfiguration will also be supported in other parts of the
TUKUTURI architecture, such as the DMA controller and
the register file structure. For example, it is planed that the
DMA controller supports the use of simple data transforma-
tions that will be performed on-the-fly while accessing data
from the external memory, e.g. a realignment process pro-
posed in [4].

3. THE DMA-ICAP CONTROLLER

DPR is supported by the TUKUTURI processor by means
of RFUs and (if required) reconfigurable co-processor units.
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Fig. 2. Simplified scheme of a part of the TUKUTURI exe-
cution stage.

The RFU coupling mechanism is tighter than the other mech-
anisms based on hardware accelerators. Moreover, it does
not only implement a direct connection between the RFUs
and the register file but also supports data forwarding. Dur-
ing the reconfiguration process, the RFU being reconfigured
can not be used by the TUKUTURI processor and the out-
puts of this unit are not propagated, as usual in any pipeline
processor. This mechanism is sufficient to isolate the RFU
from the rest of the processor architecture.

In Figure 2, the technique used to isolate the RFU is
shown. The main concept is that each FU or RFU should
generate a zero output if not used. On the one hand, an
AND-gate logic is used in non-reconfigurable FUs to pro-
duce a zero result in case this FU is not used (i.e., enable
signal is zero). This technique was used before in ASIC im-
plementation to reduce the switching activity of the FUs and,
therefore, the dynamic power consumption. In FPGA imple-
mentation, during the logic synthesis, these AND-gates are
distributed inside the FU logic with a marginal increase of
the hardware resources. On the other hand, an AND-gate
logic is used to control the results of the RFUs. In contrast
to non-reconfigurable FUs, this logic will not be distributed
inside the RFU logic during the FPGA logic synthesis and it
is used to isolate the RFU during its reconfiguration. Finally,
an OR-gate logic is used to generate the result operand for
each issue-slot.

It is worth mentioning that an efficient FPGA implemen-
tation of the SIMD-FUs is crucial for reducing the hardware
resources requirements and, therefore, decreases the number
of cycles required for reconfiguring the unit [5].

DPR is performed by using the internal ICAP [6] mod-
ule available in the Xilinx Virtex FPGA family. The TUKU-
TURI architecture implements a DMA-ICAP concept (see
Figure 3) that allows the processor core to read the informa-
tion required for reconfiguring the FPGA device (i.e., partial
bitstreams) from an external memory. The transmission of
the partial bitstream and the following reconfiguration pro-
cess is initiated by the TUKUTURI processor by program-
ming the configuration registers (see Table 1).
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Fig. 3. Block diagram of the DMA-ICAP controller inter-
connected with the TUKUTURI processor and an external
memory, where the partial bitstreams are stored.

Figure 4 shows an example of an assembler code that
indicates how the partial reconfiguration works. This as-
sembler code is executed on the TUKUTURI processor to
program the DMA-ICAP controller, which performs the re-
configuration of a RFU during the execution of a subroutine
that does not use this RFU.

The assembler code can be summarized in the following
points: In lines 2 and 3, twoSTOREILare used to config-
ure the DMA-ICAP. In this example, the partial bitstream is
0x480C bytes large, as written in BLOCKSIZE. Then, the
address position where the partial bitstream is located (in
the external memory) is stored in EXTADDR. This STOR-
EIL initiates automatically a block-transfer of the indicated
partial bitstream to the ICAP unit. In line 6, a subroutine
call and return is performed. This subroutine is located in
L SUBROUTINEA. RegisterV0R31is used to return back
to this program position after the subroutine execution. Fi-
nally, in lines 9 to 14, a WAIT loop is used to check if the
DMA-ICAP controller has finished the reconfiguration pro-
cess (i.e., the partial bitstream transfer). For that, the STA-
TUS FLAG is read and compared with the immediate value
0x1. These two operations will be executed until the result
of the comparison is zero. The STATUSFLAG register is
automatically initialized to 0 after programming the DMA-
ICAP controller (i.e., writing in EXTADDR), and then it
turns to 1 when the partial bitstream has been transfered
completely (i.e, BLOCKSIZE bytes were transfered).

It is desired that the reconfiguration process is performed
in background by the DMA-ICAP controller, allowing the
processor core to execute other tasks simultaneously. In
Figure 4,L SUBROUTINEA is executed at the same time
that the DMA-ICAP controller performs the reconfiguration.
Therefore, it is the task of the software engineer to optimally
schedule the reconfiguration process of a new RFU together
with the execution of a RFU-independent subroutines.

The DMA-ICAP controller also implements internally a
dual true port FIFO with different data width ports (a 32-bit
data port connected to the ICAP module and a 64-bit data
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Table 1. DMA-ICAP Configuration Registers.
Parameter Description

EXT ADDR External memory base address where
the partial bitstream is located

BLOCK SIZE Size in bytes of the partial bitstream
STATUS FLAG Flag that indicates if the DMA-ICAP

is still performing the transfer

1 / / Recon f i gu re RFU1 by programming t h e DMA−ICAP
2 STOREIL 0x211 , #0x480C / / Wr i te t o BLOCKSIZE
3 STOREIL 0x210 , #0 x600000 / / Wr i te t o EXTADDR
4

5 / / Execu te a s u b r o u t i n e t h a t does no t use RFU1
6 JLR V0R31 , L SUBROUTINEA
7

8 / / Check R e c o n f i g u r a t i o n b e f o r e us i ng RFU1
9 : L WAIT

10 LOAD V0R0 , 0x212 / / Read from STATUSFLAG
11 SUBICS 8 V0R1 , V0R0 ,#0 x1 / / V0R1=V0R0−0x1
12 / / s t o r e s t a t u s f l a g s
13 / / ( e . g . ze ro )
14 BSR L WAIT , #0 b00000001 , #CONDZERO
15 / / Jump t o LWAIT
16 / / i f subword 0 was ze ro

Fig. 4. Example of an assembler code that uses the DMA-
ICAP to load the RFU1 and checks if the reconfiguration
process has finished.

port connected to the OCP bus via a BUS master). This con-
figuration uses the FIFO as a buffer, allowing to reach the
maximum available reconfiguration speed even if the exter-
nal memory is partially busy. It is worth mentioning that
the overall system works with more than 100 MHz. There-
fore, for this system clock frequency, the DMA-ICAP mod-
ule, that also works with 100 MHz, only requires one 64-bit
data every two system cycles (i.e., one 32-bit data every sys-
tem cycle) to feed the ICAP module continuously with 32-
bit data from the partial bitstream, reaching the maximum
bandwidth of 400 MB/s.

4. EVALUATION

In case of processing a video sequence (e.g., for video-based
driver assistance systems or video coding purposes) under
real-time conditions (i.e., 30 fps), the TUKUTURI archi-
tecture can sequentially reconfigure a typical 64-bit SIMD
arithmetic unit up to 720 times per frame (see Table 2).
Moreover, more complex units, such as the disparity map
unit presented in [7], can be reconfigured up to 98 times per
frame, also allowing the use of DPR in intra-frame video
processing. This FU computes the position of the minimum
8-bit value on two vector registers, each one with 32 values.
However, there is a technological limitation on Xilinx FPGA
devices. For example, on Virtex-5 FPGA devices, only one
reconfiguration can be performed simultaneously, although
these devices have two ICAP units.

Table 2. Time required to reconfigure different representa-
tive SIMD-Functional Units on a Xilinx Virtex-5 LX330.

SIMD Unit LUTs1 RB2 Cycles3 RPF4

ClipMaxMin 170 2 ∼ 3080 ∼ 1082
Arithmetic 293 3 ∼ 4620 ∼ 721
Shift-and-Round 1504 12 ∼ 17920 ∼ 186

Disparity-Map5 2835 22 ∼ 33870 ∼ 98

1Look-up-Tables.2Virtex-5 Reconfigurable Blocks.3Number of cycles

required to reconfigure each SIMD-FU. These cycles are measured on a

CHIPit emulation system using the DMA-ICAP and the TUKUTURI soft-

processor at 100MHz.4Number of times that each unit can be reconfigured

per frame for a 30 frame per second system constraint.5Implementation of

a complex SIMD disparity map unit presented in [7] asDISP X4.

5. CONCLUSION

In dynamically reconfigurable soft-processors for video sig-
nal processing, the size of the reconfigurable modules con-
straints the maximum number of reconfigurations per frame
while processing a frame under real-time conditions (e.g.,
30 fps). The evaluation presented in this paper shows that
the use of specialized reconfiguration functional units can
be used for speeding-up intra-frame processing due to their
fast reconfiguration.
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ABSTRACT

Imagine further a computing system that performs better ac-
cording to a user’s preferred goal the longer it runs an ap-
plication. Such an architecture will enable, for example, a
hand-held radio or a cell phone that can run cooler the longer
the connection time. Moreover, Systems on a Chip (SoC)
can draw various benefits, such as adaptability and efficient
acceleration of compute-intensive tasks from the inclusion
of reconfigurable hardware as a system component. Dy-
namic reconfiguration capabilities of current reconfigurable
devices create an additional dimension in the temporal do-
main. During the design space exploration phase, overheads
associated with reconfiguration and hardware/software in-
terfacing need to be evaluated carefully in order to harvest
the full potential of dynamic reconfiguration. Self-aware
computer systems will be capable of adapting their behavior
and resources thousands of times a second to automatically
find the best way to accomplish a given goal despite chang-
ing environmental conditions and demands. In this work we
present an attempt in presenting the key enabling technolo-
gies to realize such self-aware runtime system that can gain
benefits from the presented paradigm.

1. INTRODUCTION

Reconfiguration capabilities and hardware-software codesign
techniques are becoming just elements of a more complex
scenario. The need for a systematic approach to the design
of new architectures and systems enabling self-awareness
is motivated by some trends that have gained momentum
in the past few years. Research is pushing forward, look-
ing for complex heterogeneous, reconfigurable multi-core
architectures. In order to overcome the limits deriving by
the increasing complexity and the associated workload to
maintain such complex infrastructure, one possibility is to
adopt self-adaptive and autonomic computing systems [1].
A self-adaptive and autonomic computing system is a sys-
tem able to configure, heal, optimize and protect itself with-
out the need for human intervention. Different companies,
i.e., IBM [2, 3], Oracle [4], and Intel [5] have invested in
this research, creating several products characterized by a
self-adaptive behavior. However, a lot of work still needs

to be performed in defining effective self-adaptive and auto-
nomic architectures in the embedded system domain.

On one hand there is the increasing importance of non-
functional constraints: in the perceived value of a digital
system, features that are not completely reducible to the
functionalities are getting ever more important. Two famous
examples of such non-functional constraints are power con-
sumption and reliability, but there are many other potential
dimensions, that lie at the border of what can be called func-
tionality, that impact user experience of a digital system or
device; examples can be results accuracy, like in different
audio and video qualities for a multimedia device, or effi-
ciency in understanding human signals in interactions (as
already happens, for instance, in speech recognition soft-
ware)). Meeting such constraints (or optimizing the associ-
ated figures) is getting more and more difficult, mainly be-
cause of the exponential increase of environmental interac-
tions and conditions in which devices are required to oper-
ate.

On the other hand, devices structure evolution tends to-
wards forms of complexity characterized by the increase in
number and of complexness of interacting ”peer” elements,
at various levels (e.g.: cores on a multicore processor, con-
current programs in a multitask operating system, number
of threads within a single application). Meeting non func-
tional constraints requires, most of the times, a coordination
among all those elements, for any possible working condi-
tion. It is evident that statically foreseeing, at design time,
the actions that must be taken in order to maximize non-
functional constraint satisfaction for all the possible scenar-
ios is already way beyond feasibility. Think of the simplest
problem that control engineering faces since a long time:
controlling the temperature of a room to stay stable at a
given value, within acceptable bounds. Room temperature
can be determined or influenced by a plethora of different
factors: outside weather, windows being open or closed, the
presence of persons inside the room and so on. Knowing all
such factors in advance is of course impossible. The concep-
tual solution developed was the closed loop control: the sys-
tem reacts to deviations from the goal (differences between
the temperature set and that measured) with actions some-
how proportional to that distance (injecting thermal power
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in the room).

The user of the control system just sets the goal, then the
system dynamically and automatically reacts, adapting itself
to the new conditions. This control task example can be used
as a metaphor for the motivations towards implementation
of the self-aware adaptive systems that are the focus of this
project: as the temperature controller exploits information
on its state and on the environment to pursue a goal that is
dependent on a set of factors non foreseeable at design time,
so should be able to do, on a much higher, behavioral level,
embedded systems.

2. CONTEXT DEFINITION

Resources such as quantities of transistors and memory, the
level of integration and the speed of components have in-
creased dramatically over the years. Even though the tech-
nologies have improved, we continue to apply outdated ap-
proaches to our use of these resources. Within this con-
text, imagine an interaction capability of digital systems by
which designers and users can specify their desired goals
rather than how to perform a task, along with constraints
in terms of an energy budget, time, or simply a preference
for an approximate answer over an exact answer. Imag-
ine further a computing chip that performs better accord-
ing to a user’s preferred goal the longer it runs an applica-
tion. Such an architecture will enable, for example, a hand-
held radio or a cell phone that can run cooler the longer
the connection time. Or, a system that can perform reliably
and continuously in a range of environments by tolerating
hard and transient failures through self healing. Self-aware
computer systems will be capable of adapting their behavior
and resources thousands of times a second to automatically
find the best way to accomplish a given goal despite chang-
ing environmental conditions and demands. Such a capa-
bility would benefit a broad spectrum of computer systems
from embedded systems to supercomputers and is particu-
larly useful for meeting power, performance, and resource-
metering challenges in mobile computing [6, 7], grid and
cloud computing [8, 9, 10], multicore computing [11, 12,
13], networks [14, 15], self-healing systems [16, 17, 18],
complex distributed Internet services [19, 20, 21], distributed
system [22], operating systems [23, 24, 25, 3, 26], and adap-
tive and dynamic compilation environments [27, 28].

3. RUNTIME SELF-AWARE SUPPORT

The operating system is in charge of choosing at runtime
between the set of possible implementations (a software one
or one of the available hardware implementations) accord-
ing to different criteria, such as the available area (set of re-
sources) on the FPGA, input data type and dimension, func-
tionalities already implemented and available as hardware

components. The runtime decision of the most suitable im-
plementation (software or reconfigurable hardware) due to
runtime conditions, allows this work to be considered as an
attempt to the define a self-aware computing system. The
operating system answers a request for a functionality by
choosing a runtime the best implementation. Best does not
mean the optimal solution but the one that can guarantee
the best performance considering all the runtime conditions
in which it has to be executed. Considering the scenario
where an hardware solution is chosen as the best implemen-
tation, the corresponding hardware module has to be loaded
by configuring the IP-Core on the FPGA and by creating a
communication channel between the module and the soft-
ware application in a transparent way. As a consequence,
the IP-Core becomes accessible from the userspace when
the control is returned to the user application. The online
adaptability of the overall system is implemented in the OS
by means of kernel modules implementing a closed control
loop, called Self-Aware Support in Figure 1, and an Adap-
tive library. The Self-Aware support kernel extension, lo-
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Fig. 1. The overview of a Self-Aware systems where the
operating system is in charge on managing the online adap-
tation of the applications and of the underline architecture.

cated between the userspace and the physical architecture,
performs the online adaptation of the system, providing a
common interface for software applications and hardware
developers. Each software application communicates with
the kernel using the API of the reconfiguration library, which
allows also the access to the hardware component that phys-
ically implements specific functionalities, once they have
been configured on the FPGA by the operating system.

4. EXPERIMENTAL RESULTS

We designed a self-aware implementation [29] of the GNU/Linux
operating system able to monitor itself to take autonomous
decisions on the best implementation for the demanded func-
tionalities. Each software application, also named process,
can issue one or more system calls in order to require a spe-
cific functionality, which may be available either as a classi-
cal software library, as an adaptive software, or as hardware
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IP-Cores, or all of them. The operating system is in charge
of choosing among the software or the hardware implemen-
tation according to different criteria, such as the amount of
free area on the FPGA, or the dimension/number of data that
has to be processed.

The case study that we would like to present, belongs
to the cryptographic application domain. A cryptographic
reconfigurable architecture, implementing the Data Encryp-
tion Standard, has been designed to evaluate the performance
of the run-time decision of the best implementation for any
demanded task. The proposed case study, as shown in Fig-
ure 2, compares the performance of different implementa-
tions of the DES algorithm. The FPGA-based solutions have
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Fig. 2. Performance, in execution time, of the different im-
plementations of the DES algorithm.

been implemented on a Xilinx Virtex-II Pro working with
at 100MHz, while the data regarding the software solution
has been taken using an Intel Pentium Dual Core working at
1.60GHz with Linux (kernel 2.6.27). Three different FPGA
implementations have been implemented:

• SW: the DES algorithms has been executed in soft-
ware on the processor on the FPGA;

• RHW: the algorithm has been implemented as a re-
configurable component and finally;

• CRHW: the reconfigurable component was already con-
figured on the FPGA and ready to be used.

To optimize the execution time of a functionality, it is im-
portant for the operating system to be able to choose the
best implementation at runtime. Therefore, the OS has not
only to be able to understand on which scenario of the graph
shown in Figure 2 it is working, but to foresee the impact of
its decision on future calls. This will lead the OS to choose
the most appropriate implementation for the demanded task,
that may not lead to the best performance to that specific
call, but that may provide better performance to the next
ones.

In a scenario were we have enough area on the FPGA to
configure the HW implementation of the DES algorithm, for

a call on at least 3001 blocks, it is not always the best deci-
sion to go for the Intel Dual Core solution even if we do not
have the core algorithm already implemented as an HW IP-
Core. To explain this situation we can consider the scenario
characterized by two calls of the DES algorithm, the first one
on 1000 blocks and the second one on 400. As shown in Fig-
ure 2, the best implementation, when the HW IP-Core has
not been already configured on the FPGA, is the Dual Core
one. Within this scenario, where the system has no knowl-
edge of future calls (it is not aware of the fact that after the
1000 call it will serve a 400 one), the OS will always choose
the Dual Core implementation of the DES. This is the so-
lution already implemented in literature in different works
[30, 31]. On the contrary, considering the history of the pre-
vious calls, the performance information of all the possible
implementations, and the probability of receiving a certain
call, our system will choose the reconfigurable HW solution
(reconfiguration of the IP-Core and its execution) for the first
call, since it will be payback for each consecutive call on at
least 400 blocks. Table 1 presents the comparison between
the two different approaches.
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ABSTRACT
To enable the self-awareness in reconfigurable platforms,
FPGAs will require sensors to measure various physical quan-
tities. A physical quantity such as the temperature profile of
an FPGA die allows the platform to perform thermal man-
agement by dynamically relocating workloads. Previous re-
search works have already demonstrated such self-aware and
adaptive reconfigurable platforms. However, the relative high
resource utilizations by their temperature sensors make their
proposals less useful. We develop a low overhead tempera-
ture sensor for reconfigurable platforms that utilizes only 7
Flip Flops, 16 6-LUTs and 7 SRL32E. This is 52% less than
that of the state-of-the-art. The resolution of our tempera-
ture sensor is 0.5◦C with a sampling period of only 1ms and
the accuracy is ±0.5◦C using two-point calibration. We use
the sensor in our reconfigurable platform to demonstrate its
effectiveness.

1. INTRODUCTION

Due to the feature size shrink of transistors, integrated cir-
cuits are able to achieve a much higher density to realize
a complex and high performance system in a single chip.
However, their ever increasing unit area power densities also
lead to thermal reliability issues. This fact holds true for
high-performance CPUs, GPUs, ASICs and reconfigurable
devices like FPGAs [1], and the thermal management is crit-
ical for these platforms to ensure both the correct function-
ality and the longer life-time. Temperature sensors based
on band-gap voltage and ADCs have been reported for com-
mercial CPUs. They are integrated and placed in the same
CPU die for dynamic thermal monitoring and hot-spot pro-
filing.

Temperature sensors are also needed for FPGA platforms
to generate a die temperature profile and realize the ther-
mal monitoring for self-awareness. However, off-the-shelf
FPGAs provide only a small and fixed number of temper-
ature sensors for the die temperature sensing, and they are
incapable of thermal profiling across the whole die and in

flexible locations. As a result, hot spots cannot be effec-
tively monitored. ASIC implementations of all-digital tem-
perature sensors are reported in [2, 3]. These temperature
sensors can be categorized into either the time domain (tem-
perature dependent delay) or the frequency domain (temper-
ature dependent frequencies) sensors. However, either of
them can be implemented in FPGA platforms. The design
trade-offs of temperature sensors on FPGAs should be deter-
mined among the resource utilization, accuracy, resolution
and self-heating. To measure the die temperature profile,
these sensors should be instantiated in large numbers across
the entire die. As a result, each sensor should have a low
resource utilization.

In this work, we propose a low overhead temperature
sensor which can be instantiated in large numbers to mea-
sure the temperature profile of an FPGA die. The sensor
uses 52% less resource than that of the state-of-the-art. It
achieves a resolution of 0.5◦C with a sampling period of
only 1ms, and an accuracy of ±0.5◦C using two-point cali-
bration.

2. RELATED WORK

Some previous research works focused on thermal-aware
application management [4, 5, 6, 7]. However, the actual
performance and area requirements of the sensor have not
been discussed. Other research works have been done to
develop and demonstrate temperature sensors on FPGAs.
However, due to their overheads and performance limita-
tions, they were practically less useful. A fully digital time-
domain temperature sensor [2] was demonstrated on FPGA
using 140 logic elements. Later, they improved their design
using a retriggerable ring oscillator [3], but their design was
not optimized for FPGAs as it was targeted at ASICs. Other
works [8] have also tried to improve the performance of their
temperature sensors by using different techniques. However,
their area overheads are significant. We demonstrate a low
overhead time domain temperature sensor using a retrigger-
able ring oscillator which offers the comparable accuracy
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and the improved sampling performance. It is modular and
features direct digital readout in the calibrated unit.

3. CIRCUIT DESCRIPTION

In this section, we present our temperature sensor. The block
diagram of our temperature sensor is shown in Fig.1. The
complete design can be divided into three sections: (1) Main
Sensor, (2) Reading Circuit, and (3) Calibration Circuit. Each
component is explained in the following subsections.

3.1. Main Sensor

The main sensor measures temperature by calculating the
increase in the period of the retriggerable ring oscillator.
The actual increase in the period is very small and can-
not be measured directly. Therefore it is amplified using
a programmable divider (Programmable Time Amplifier).
The delay is accumulated over time during the division. As

shown in Fig.1, tamp enables the ring oscillator and pro-
grammable divider divides the oscillation tosc. Signal tamp

is corrected using the programmable offset correction cir-
cuit to convert the extended period into a pulse that is di-
rectly proportional to the temperature with zero bias. In
other words, at 0◦C, the output is just the starting pulse. The
pulse width of the output of a calibrated temperature sensor
will be:

td = T × tClk × α × β + tClk (1)

where, td is the pulse width of the output, T is the tem-
perature in the desired unit, tClk is the period of the refer-
ence clock, α is the inverse of accuracy in the desired unit,
and beta is the integration factor. It can be seen from the
equation that the pulse width will be 1 clock period wider
than the actual value. This is because a starting pulse is al-
ways added to the beginning of the output pulse to enable
the synchronization at the reading circuit.
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Unlike previous work, the retriggerable ring oscillator
in our sensor uses the transport delay in signal through the
routing fabric of the FPGA as shown in Fig. 1(c). The place-
ment of each LUT is constrained to be near the periphery
of the region such that the routing distance between each
is as large as possible. The exact number of buffers in the
oscillator is a system parameter and can be adjusted for dif-
ferent sized regions. The placement of LUTs and routing
is matched among different sensors in similar sized region
through placement and directed routing constraints. How-
ever, it was observed that significant jitter was present in the
period of the ring oscillator. This decreased the accuracy of
the sensor significantly. To reduce the effect of the jitter, the
output pulse from the ring oscillator was accumulated by us-
ing a fixed divider refer to as the integrator in Fig.1(d). The
division factor is referred to as integration factor in equa-
tion 1. The extended versions of the pulse is again extended
by programmable divisor (Programmable Time Amplifier).
This dividing factor depends upon the resolution and cali-
brated unit. The factor is set such that unit increase (w.r.t
the resolution and accuracy of measurement) in pulse length
is exactly one clock period (tClk). In other words, if the
resolution is high then the divisor will be larger. This im-
plies a larger conversion time and larger area requirements
for the programmable divider. Therefore, there is a trade-off
between the conversion time and resolution. Offset correc-
tion is performed by using a masking pulse that is only high
between minimum and maximum measurable temperature
w.r.t the output of the ring oscillator. In this case, the pulse
was high only between 0◦C and 80◦C. The implementation
use an efficient implementation of dividers and pulse gener-
ators using cascaded shift registers as shown in Fig.1.

3.2. Reading Circuit

The reading circuit only consists of a simple up-counter that
is enabled by the output pulse of the temperature and thus
measure the pulse width of the output pulse. The count
of the counter is a direct binary readout of the temperature
in the selected unit during the calibration. The counter is
cleared at the rising edge of the output pulse. This auto-
matic synchronization allows us to interface many tempera-
ture sensors by multiplexing the input of the reading circuit.

3.3. Calibration Circuit

The calibration circuit is used to read the digital readout
across the operating temperature range and load the cor-
rected gain and offsets coefficients into each sensor. The
corrected divisors and offsets are calculated based on the
readout from the sensor and the actual reading. This circuit
is only required during calibration and can be removed by
hard coding the coefficients. The procedure used to calibrate
the sensor is mentioned in the Section 4.

4. CALIBRATION

The actual oscillating frequency of the ring oscillator in-
creases non-linearly with increase in temperature over a large
temperature range. However, for small ranges, the relation-
ship can be approximated using a straight line. This allows
us to use a simple counter as a reading circuit. For better
accuracy, two point method can be used which corrects both
the gain and offset coefficients. For simpler calibration, one
point calibration can be used which only corrects the offset
at the given temperature. Since the gain is not calibrated,
therefore, the accuracy over the selected temperature range
may be reduced.

For two-point calibration, the temperature of the FPGA
is controlled using a temperature controlled oven. Two tem-
peratures are selected on the basis of the operating range of
the FPGA and the readout of the sensors at those tempera-
ture are recorded using default gain and offset coefficients.
The actual operating frequencies of the ring oscillators in
each sensor can be calculated using the readouts at each
temperature. Then we can calculate the correct values of
the gain and offset coefficients and load it using the calibra-
tion circuit. After verification, the calibration circuit can be
completely removed and the gain and offset coefficients can
be hard coded in HDL. The placement and routing of the
ring oscillators are recorded in a constraint file. This allows
the calibration to be preserved for that FPGA. Because of
process variation among different FPGAs of the same type,
the oscillating frequency of the ring oscillator is not the same
and therefore, the calculated coefficient are only accurate for
that FPGA. Therefore, calibration is required for different
FPGAs. To simplify the calibration process, only one-point
calibration can be performed by calculating the offset co-
efficient using the calibrated coefficients (of another FPGA
of the same type) as default. Since the change in gain co-
efficient is generally not large from one FPGA to another
(of the same type), therefore the accuracy will not be badly
affected.

5. EXPERIMENTAL RESULTS

We used Xilinx Virtex 6 board ML605 for the implementa-
tion. The ring oscillator of the sensor used 10-LUTs. The
sensors were calibrated using the on-die temperature sensor
in a temperature controlled oven from 35◦C to 70◦C. Chip-
Scope Pro Virtual I/O was use to measure the readout and
load corrected divisors and offsets. We achieved an accu-
racy of ±0.5◦C using two-point calibration on two FPGAs
and an integration factor of 64. We compare in Table 1 the
resource utilization and the performance of our sensor with
that of the related works.

We further build an evaluation platform based on the
AARP [9] on Xilinx ML605 Board [10]. The AARP plat-
form allows us to instantiate applications dynamically in the
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Fig. 2. Floorplan of Implementation

Table 1. Comparative Study
#LE Resolution Accuracy Samples/sec

[2] 140 0.06 -1.5 to 0.8 3000
[3] 48 0.13 -0.7 to 0.6 4400
Our Sensor 23∗[24†] 0.5 0.5 1000
∗ Resource Usage on Virtex 5/6, Spartan 6, and Series 7 FPGAs:
07 FFs, 16 6-LUTs, 07 SRL32Es packed into 23 Equivalent LEs
† Resource Usage on Virtex 4 and Spartan 3 FPGAs:
07 FFs, 15 4-LUTs, 09 SRL16Es, 22 MUXFX, 03 MUXF5 packed
into 24 Equivalent LEs

FPGA. The floorplan of the implementation on FPGA is
shown in Fig.2. As shown in the Fig.2, there are 8×6(= 48)
regions available. We develop a small dummy application
using only one region and embed our developed sensor in it.
We instantiate the dummy application in all the regions and
calibrate the sensors using the one-point calibration using
the initial coefficients from the first experiment. We achieve
an accuracy of 0.5◦C for the operating temperature range
from 35◦C to 70◦C. We are able to successfully measure
the temperature profile of the reconfigurable regions of the
FPGA. This information will be used by the system manager
for hot spot detection and thermal management through dy-
namic frequency scaling and task scheduling/relocation in a
future work.

6. CONCLUSION

We present a low overhead time domain temperature sensor
to enable self-awareness for reconfigurable platforms. The
sensor uses 52% less resource than that of the state-of-the-
art. Its resolution is 0.5◦C with a sampling period of only
1ms. Its accuracy is ±0.5◦C using two-point calibration.
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ABSTRACT
Nowadays the complexity of computing systems is skyrock-
eting. Programmers have to deal with extremely powerful
computing systems that take time and considerable skills to
be instructed to perform at their best. This work analyzes the
stated problem and proposes a simple, yet powerful mech-
anism for optimizing performance through the coordination
of the interaction of multiple, independent adaptive systems
called services. In this scenario we developed the Services
Coordinator, a system-centralized decision engine based on
reinforcement learning. The Services Coordinator gathers
information about the performance goals of the system and
can either turn services on or off. The Services Coordina-
tor analyzes the runtime impact of services and of their au-
tonomous decision policies, looking for a combination of
services that makes it possible to reach the given goals. The
experiments that have been carried out show the ability of
the Services Coordinator to adapt to changing conditions,
confirming the validity and the flexibility of the followed
approach.

1. INTRODUCTION
The power and the complexity of computing systems are
evolving and increasing at an unprecedented rate. On one
hand, the advantages of highly-parallel systems could ben-
efit an enormous variety of fields. On the other hand, the
growing complexity is making it unfeasible for the average
programmer to weight all the constraints and optimize the
system for a wide range of machines and scenarios [1]. Even
though technologies have improved, making a system per-
form at its best is a non-trivial task. The burden on program-
mers is noticeable and many research efforts were spent in
addressing this issue. Clearly, it is not feasible to rely on hu-
man intervention to tune a system: conditions change con-
stantly, rapidly, and unpredictably. It would be desirable to
have the system automatically adapt to the mutating envi-
ronment [2].

A commonly shared opinion is the need for new paradigms
to be explored and for new frameworks to be developed.
Among those, self-adaptive systems seem to be the answer
to most of the problems previously described [2]. Self-Aware
Adaptive computing systems adapt behavior and resources
to automatically find the best way to accomplish a given goal

despite changing environmental conditions and demands. There-
fore, this kind of system needs to monitor itself and its con-
text, discern significant changes, determine how to react,
and execute decisions.

This work presents a solution able to adjust itself dur-
ing execution due to a simple, yet powerful mechanism for
coordinating the interaction of multiple, existing adaptive
systems, each of them with its own decision engine. The
system used in this paper considers current computing and
operating systems augmented through the usage of a modu-
lar ecosystems of software components called services, ca-
pable of actuating a change on the system. The proposed
solution can be used within different architectures, from mo-
bile devices (e.g. mobile phones), to desktops, servers and
laptops. In this scenario we developed a system-centralized
decision engine, called Services Coordinator and based on
reinforcement learning. The Services Coordinator gathers
all the information about system performance and is able
to decide which measures to enact, orchestrating the differ-
ent elements that commit changes to the environment. The
Services Coordinator is fully integrated in a standard Linux
operating system, aiming at making it a Self-Aware Adap-
tive computing system, and co-exists with other independent
and adaptive decision making entities, which reside in ser-
vices. The Services Coordinator turns services either on or
off as necessary to meet the performance goals of the sys-
tem. We validated the framework with preliminary tests,
aimed at evaluating the approach and the feasibility of the
solution.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the context of adaptive operating systems.
Section 3 introduces and describes in detail the proposed
methodology and the machine learning-based decision en-
gine. In Section 4 our experimental results are presented.
Finally, Section 5 concludes the paper.

2. CONTEXT DEFINITION
The goal of the Services Coordinator is to enhance the Oper-
ating System (OS) with a novel adaptivity layer at run time.
A common Linux distribution is chosen here as the target
OS to show the wide applicability of the approach in both
designing a completely new OS and complementing exist-
ing code. In literature, some projects exist that are explicitly
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trying to enable self-awareness and adaptiveness in a newly
designed OS. Space limitations allow only a brief descrip-
tion of main contributions in the area: K42 [3] and Sefos
[4].

K42 is a research kernel designed for cache-coherent
64-bit multiprocessor and NUMA systems. Among its de-
clared goals there is allowing applications to customize the
OS behavior in how the OS is managing the resources de-
voted to them. Another stressed goal is letting the system
adapt to changing workload characteristics. To achieve these
goals, the overall structure of K42 is based on the object-
oriented paradigm and on a modular design based on mi-
crokernels. K42 proposes a layered architecture based on
kernels, servers, and user-level libraries for applications de-
veloping. The servers marshal all the operating system func-
tionalities, therefore introducing adaptation at the OS level
means simply modifying the behavior of these servers. It is
noticeable that however, a central, coordinating entity is not
included in this structure.

SElf-aware Factored Operating System (Sefos) is a self-
aware OS specifically designed for scalability on many-cores
architectures. It is based on the fos [5] operating system,
and integrated with SEEC [6] (SElf-awarE Computational
model), the purpose of the integration being the introduc-
tion of the self-adaptation layer. To do this, a typical deci-
sion loop is implemented: the autonomic system executes
and monitors itself using sensors. The system is able to re-
act to the sensed conditions, taking decisions and acting to
guarantee application performance. The adopted monitor-
ing interface is Application Heartbeats [7, 8]. There is a de-
cision engine acting on the system to set the values of each
decision parameter. However, when multiple decisions are
taken at the same time, it is not clear how the coordination
between the different actuation mechanisms available in the
system takes place. Notice also that Sefos relies on trusted
actuators: no security checks are performed on the taken
decision, thus malicious entities cannot be detected and de-
activated.

Similarly to Sefos, the adaptive system the Services Co-
ordinator lives in, implements a decision loop. However the
Services Coordinator represents a new entity: it is a system-
centralized decision engine, learning how to enable and dis-
able the available adaptation mechanisms in order to meet
the high level goals of the system.

3. PROPOSED METHODOLOGY
To better understand the importance and the rationale behind
the Services Coordinator, the general scenario1 that we are
addressing is briefly presented. It is made of applications,
processes and monitored processes, services and the Ser-

1The description of the overall approach with details of each
component, presenting a set of experiments to prove its effective-
ness, is out of the scope of this paper. This paper is focusing its
attention of the Services Coordinator, the key component at the
center of the decision loop.

vices Coordinator, in a system structured as shown in Figure
1:

• Applications – Pieces of software written to accom-
plish a specific task.

• Processes – Instances of an application.

• Monitored Processes – Processes that are making one
or more entities of the system aware of their perfor-
mance goals and actual progresses. To do this, the
Application Heartbeats framework [8, 7] is used.

• Services – A service represents a component capable
of performing changes on one or more applications or
on the whole system. Services are enabled or disabled
by our decision engine; when enabled, they are au-
tonomous components that can decide and act on the
system, for example reading the performance signals
of the applications and/or computing some reaction to
changes in the external environment.

• Services Coordinator – It is the object the focus of
this document is on. It is aware of monitored pro-
cesses and services, gathers data about applications
performance levels and acts enabling or disabling ser-
vices. Its action policy is based on a machine-learning
technique.

Application

Heartbeats API
Performance
data

Application

Application

Heartbeats API

Performance
data

Service A

Service B

Service C

Service D

Information retrieval
Commands
Effect of service

Services
Coordinator

Fig. 1. The Services Coordinator architecture.

In this context, the applications set their performance
goals and the Services Coordinator orchestrates the avail-
able services boosting (or reducing) performance in order to
make it possible to achieve the given goals. This scenario
features the Services Coordinator as a central element that
has a global vision of the system.

We believe this approach has the power to achieve, if
possible, a global optimum. We are conscious of the the-
oretical fragility of the proposed architecture, the Services
Coordinator representing a single point of failure. This con-
dition has been partially mitigated by our implementation,
which allows each enabled component of the framework to
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run even in case of failure of one or more other components.
However, the research is still ongoing on this topic and more
experiments have to be carried out to evaluate different so-
lutions.

3.1. Orchestrating the services
The Services Coordinator stands at the center of the decision
loop and exploits the awareness given by the available obser-
vation mechanisms (in this case Application Heartbeats) to
elaborate a plan for future behavior. The aim is to tune per-
formance in order to make each monitored process achieve
its performance goals. In particular, the Services Coordi-
nator exploits the information coming from the monitor in
order to determine the available services and the monitored
applications; constantly verifies the availability of new or
old services and the presence of new or old monitored pro-
cesses; gathers the information coming from the monitored
processes; analyzes the performance-related data in order
to understand whether to enact a correction policy; decides
which services to enable or disable and communicates them
these decisions.

The decision policy that drives the Services Coordinator
is based on machine learning techniques, which were proved
powerful tools for managing the increasing complexity of
computing systems [9, 10, 7]. We implemented R-learning,
a reinforcement learning algorithm [11]. In general, Rein-
forcement Learning augments a system with the possibility
to learn from experience through the use of a reward signal
that drives the learning process. In particular, the algorithm
calculates a signal that is a synthesis of the current state (and
of its performance characteristics, such as whether the appli-
cations are in the desired performance range); it then selects
actions attempting to maximize the given reward. A Rein-
forcement Learning technique is needed since the Services
Coordinator has no a-priori knowledge about the action per-
formed by each service in the system. Within this context, it
has to discover the effects of each independent adaptive sys-
tem enabling and disabling it. Furthermore, Reinforcement
Learning provides an efficient method to build knowledge
from experience.

Once a strategy has been decided by the Services Coor-
dinator, it must be enacted. In our frameworks the actuators
are called services. There are many kinds of services that
might be available and that might affect the system in dif-
ferent ways: some might affect performance, accuracy, or
both; some might impact on the whole system while others
might target one or more applications. In the following we
focus on a couple of services but many others could be en-
visioned (e.g., lock mechanisms [7], memory allocation and
frequency scaling [6]). The two services we address are core
allocation and priority adjusting. Both these optimizations
are enabled on a per-application basis. It is worth stressing
that this means that a service per application could be acti-
vated.

In our design of the Services Coordinator we paid at-
tention to some of its characteristics. First, the interface be-
tween the Services Coordinator and the services is extremely
simple. Second, there is no need to model a service – some-
thing that might prove truly difficult given the heterogeneity
of the computing systems on which the framework could
run. Moreover, the Services Coordinator does not need to
be updated or restarted when new services are plugged in,
to the extent of self-configuration. All services embed a de-
cision making mechanism that is independent from the Ser-
vices Coordinator: the Services Coordinator only enables or
disables services. When a conscious service is enabled its
own loop-based decision mechanisms is activated.

4. PRELIMINARY RESULTS
The experimental evaluation was able to enable/disable a
multi-application version of the core-allocator presented in
[6] and a newly developed service named priority adjuster.
Note that the proposed methodology is general and may
be applied with any other service that implements the Ser-
vices API. The monitored processes were instances of x264,
possibly with different parameters, a different number of
threads, and different requirements. In this scenario, x264
was run to see its behavior during an uncontrolled execution
(neither the Services Coordinator or any of the services are
running). The heart rate is bound between 80 and 90 heart-
beats per second. On average, with the given parameters
and the given number of cores, it signals 85.49 heartbeats
per second.

4.1. Overhead
Previous research has shown that the Application Heartbeats
framework has a very limited overhead (e.g., only circa 4%
on an application encrypting and decrypting through the DES
algorithm). We have then analyzed the Services Coordinator
and the Services Application Programming Interface API in
order to quantify the overhead of the framework. In particu-
lar, we run an Application Heartbeats instrumented version
of x2642 without the Services Coordinator and with the Ser-
vices Coordinator and the core allocator on an x86-64 Intel
Core i7-870 processor3 and compared the results. The same
experiment has been repeated 10 times and then averaged.
The Services Coordinator-enabled version has an overhead
of circa 5%, an encouraging result.

4.2. Approach validation
In this subsection we present different tests, carried out on
the same machine used for the overhead tests. The experi-
mental evaluation was able to enable/disable a multi-application
version of the core-allocator presented in [6] and a newly
developed service named priority adjuster. Note that the

2x264 is an open-source application for encoding video streams
into the H.264/MPEG-4 AVC format.

3Clock speed: 2.93 GHz, 4 GB of SDRAM DDR3-1333,
NVIDIA GeForce GT 240 graphic card, OS: Ubuntu 9.10.
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proposed methodology is general and may be applied with
any other service that implements the Services API. The
monitored processes were instances of x264, possibly with
different parameters, a different number of threads, and dif-
ferent requirements. In this scenario, x264 was run to see its
behavior during an uncontrolled execution (neither the Ser-
vices Coordinator or any of the services are running). The
heart rate is bound between 80 and 90 heartbeats per second.
On average, with the given parameters and the given number
of cores, it signals 85.49 heartbeats per second.

4.3. Different performance goals
This experiment tests the reaction of the system in a multi-
application and multi-service domain: a second application
is started around 30 seconds from the beginning of the ex-
periment. Both the applications are instances of x264, with
different performance goals (desired heart rate of 20 to 30
heartbeats per second for the first application and 30 to 50
for the second one). The system behavior is shown in Figure
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Fig. 2. Two instances of x264 with different performance
goals. Desired heart rate ranges are in yellow and gray.

2. When the second x264 instance is introduced the Services
Coordinator explores the new state-action space entering a
suboptimal condition for the first application. It is however
able to recognize the best action to be taken almost immedi-
ately, allowing both instances to meet their goals.

4.4. Stress test
This test has been run with eight x264 monitored instances,
each of them trying to achieve the same performance goals,
their heart rate being between 5 and 10 heartbeats per sec-
ond. In this experiment eight services can be activated and
deactivated, each one being the core allocator for a specific
x264 process. Figure 3 shows the results for this test, where
the solution space is made up of 256 possible configurations.
The time needed to learn the system reactions is intuitively
higher than in the previous experiments; nevertheless this
test confirms the flexibility of the algorithm. Moreover, the
Services Coordinator reaction is fast enough to drive all the
eight applications to their desired performance level.
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Fig. 3. Eight instances of x264.

5. CONCLUSIONS
In this paper we presented a component, called Services
Coordinator, that acts as a decision engine in a self-aware
architecture capable of performing optimizations on itself,
and adapting to unpredictable, unknown, and unfavorable
conditions. The Services Coordinator is the central entity
that gathers all the information coming from applications
and decides which actions to perform in order to make the
processes reach the desired goals. It implements a deci-
sion algorithm called R-learning, allowing the component
to learn from experience and to optimize the performance of
the whole system. The introduction of such central entity,
based on machine learning, represents the prior contribution
of this paper with respect to the works described in liter-
ature. Without any prior information on the services, it is
shown that the Services Coordinator is able to learn and dy-
namically improve the quality of the system.
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ABSTRACT

To fully exploit the capabilities of run-time reconfigurable
FPGAs in self-aware systems, design tools are required that
exceed the capabilities of present vendor design tools. Such
tools must allow the implementation of scaleable reconfig-
urable systems with various different partial modules that
might be loaded to different positions of the device at run-
time. This comprises several complex tasks, including floor-
planning, communication architecture synthesis, physical con-
straints generation, and the physical implementation all the
way down to the final bitstream generation. In this paper, we
present how our GOAHEAD framework helps in implement-
ing self-aware systems with a minimum of user interaction.

1. INTRODUCTION

Partial reconfiguration of FPGAs is a key technology in the
implementation of self-aware systems that are capable of
adapting behavior and structure of hardware at run-time.
For example, reconfigurable modules might be relocated to
compensate for device defects or a variable number of ac-
celerator modules might be instantiated in order to adapt to
varying compute demands. In general, such self-adaptations
require that various modules (each with different resource
requirements) can be placed freely and multiple times on
the fabric while being able to communicate with the dynam-
ically placed modules.

However, from the FPGA vendor side, there is only weak
support for implementing such flexible self-adaptive sys-
tems. For example, following the latest partial design flow
from Xilinx [1] still does not permit relocation of modules
on the FPGA fabric. This means that in a scenario with,
for example, 10 possible module placement positions and
5 different modules, it requires 50 individual place & route
steps for the modules and consequently 50 partial configu-
ration bitstreams. Moreover, all these physical implementa-
tion steps have to be carried out again after changes in the
static part of the system. Note that these restrictions also
apply for the PR tools from Altera [2].

A further drawback of the vendor tools is that they do not
permit sharing a reconfigurable region by multiple modules

at the same time and only one module can be placed ex-
clusively into a reconfigurable region. For instance, a large
module cannot be replaced by multiple smaller ones. Conse-
quently, the vendor tools neither scale with the complexity
required for implementing advanced self-adaptive systems
nor do they allow for the implementation of systems that
exploit the full flexibility available in an FPGA.

Besides the vendor tools from Xilinx, there exist a few
academic approaches to implementing reconfigurable sys-
tems on FPGAs. For example, OpenPR [3] allows for the
implementation of relocatable modules resulting in a more
scalable flow than what is available from the FPGA ven-
dors. However, having multiple modules in a reconfigurable
region or the crossing of static routing through a reconfig-
urable regions is not supported. The tool ReCoBus-Builder [4]
includes synthesis capabilities of communication architec-
tures required to integrate multiple modules simultaneously
in a reconfigurable region, but the tool only supports older
devices. The following sections introduce how our new tool
GOAHEAD [5], can be used for building self-aware systems.

2. IMPLEMENTING SELF-AWARE SYSTEMS
WITH GOAHEAD

Implementing self-aware systems using partial reconfigu-
ration on FPGAs involves several complex tasks and deep
knowledge about self-aware strategies, as well as knowl-
edge on how to build and manage reconfigurable systems.
The tool GOAHEAD [5] automates and assists in the latter
issues. GOAHEAD provides the following features:

• Floorplanning in manual and automatic mode. This
is the process of defining reconfigurable regions on
an FPGA for hosting dynamically loadable modules.

• Communication architecture synthesis for island style
and slot-based reconfigurable systems. This is the
process of binding signals for the communication with
the partial modules to physical wires on the fabric.

• Physical constraints generation for place and route.

• Design rule checking and verification. GOAHEAD
can create netlists for simulation, timing verification,
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Fig. 1. Audio and video module with stitchable interfaces.

and full bitstream generation of any combination of
modules that might occur during system operation.

• Bitstream assembly of the static and all partial module
configuration bitstreams.

The communication architecture synthesis can create mod-
ule interfaces that allow stitching various modules together
in an arbitrary manner. It is also possible to route signals
through the region of a partial module (e.g., for crossing
the reconfigurable region), while still being able to relo-
cate modules to different positions on the FPGA (as long
as the resource footprint matches). See [5] for more details
on module relocation.

Figure 1 shows an example of two stitchable modules.
While the left module accesses the video stream while rout-
ing through the audio stream, respectively, the right mod-
ule accesses the audio stream and routes through the video
stream. Both modules provide connections that permit direct
connections between adjacently placed modules. However,
a system might provide route through modules in order to
bridge a gap between two placed modules. The compati-
bility of the interfaces is ensured by constraining signals to
matching wires on both sides of the module.

The order of stitching the modules is reversible, as long
as the underlying resource footprint matches. Because the
modules work on different data (i.e., audio and video data),
it is possible to stitch the audio module either left or right be-
side the video module while still providing exactly the same
functionality. In the case of multiple modules working on
the same data stream, two modes are supported: 1) in multi-
cast mode the input stream is tapped and sent directly to the
next module which permits an arbitrary placement order of
modules along a stream, while 2) in read-modify-write mode
the input data is processed and the result is streamed to adja-
cent modules. In the later case, the data dependency results

in an placement order along the data stream that has to be
followed.

For high performance, the communication can be pipe-
lined and clock rates of more than 300 MHz are possible on
Xilinx Virtex-6 FPGAs. Note that GOAHEAD can include
pipeline registers into route through channels that permit,
for example, to partially load a reconfigurable video module
without interfering the audio stream or vice versa. This per-
mits stitching together a large number of modules without
dropping the throughput on the channels.

As Opposed to the partial design flows from the FPGA
vendors Xilinx and Altera, GOAHEAD does not need con-
nection primitives on the signal paths from or to a partial
module (called proxy logic [1] by Xilinx). This removes in
particular for small modules (e.g., instruction set extensions
for CPUs) the logic overhead and the additional latency of
the connection primitives. As shown in the right zoomed
box in Figure 1, input signals are routed directly to the mod-
ule. In the GOAHEAD design flow, connection primitives are
placed temporarily outside the module. However, by cutting
out the module, when generating the partial configuration
bitsream, the connection primitive is completely removed
from the system.

3. CONCLUSIONS

Our novel tool GOAHEAD provides distinguished features
for implementing reconfigurable systems that are not avail-
able in the PR tools from the FPGA vendors. The tool is
available from [6]. We spent much energy on making it easy
to use. Through our effort, we hope to stimulate research on
self-aware and self-adaptive systems using FPGAs.
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ABSTRACT
The shift of mainstream computing architectures to the par-
allel paradigm, together with the increasing demand for func-
tional and non-functional requirements for modern applica-
tions result in a heavy burden for developers and administra-
tors when trying to design and tune computing systems. One
of the possibilities for lightening this burden comes from re-
search on runtime self-management and adaptation, which
aims at automatizing the runtime management of computing
infrastructures. The availability of accurate and appropriate
system status information (i.e., self-awareness) is crucial for
self-adaptive systems to be functional and useful, and can be
achieved through runtime measures provided by monitors.

This paper illustrates recent advances in the develop-
ment of an infrastructure for monitoring applications’ through-
put called Heart Rate Monitor (HRM). Its design and struc-
ture are illustrated and a showcase of its capabilities is pro-
vided. HRM introduces novel features for a runtime mon-
itor, allowing versatile instrumentation and exposing rich
runtime information. These characteristics make HRM an
enabling technology for advanced adaptation techniques.

1. INTRODCUTION
The turn of computer architectures from the well understood,
single-core structure to multiple (possibly heterogeneous)
processing elements is pervasive. This change has been dic-
tated by physical (i.e., inability to increase the clock fre-
quency) and architectural (i.e., diminishing performance re-
turns from efforts in further optimizing the individual pro-
cessors’ internal architecture) constraints [1]. To survive its
commitment to exponential performance improvements, the
computer industry changed its strategy, leading to the multi-
core era. However, new issues are arising, as modern multi-
core processors hit the power wall, being thus constrained
to make use of (i.e., switch) only a part of their transistors
at the same time and leading to the phenomenon called dark
silicon [2].

In the single-core era, faster processors provided soft-
ware performance improvements and applications experi-
enced the so-called “free lunch”, with free-of-charge speedups
just by switching to the next-generation CPU. The new par-
allel course in computer architectures, despite being due to
architectural causes, carries the side effect of ending the

“free lunch”, posing a considerable burden of improving
performance on software developers. The demands for ef-
ficient and reliable parallel software sums up to the already
considerable bulk of expertise software developers need to
successfully cope with requirements for computing perfor-
mance, functionality, reliability, and constraints satisfaction
due to today’s IT. Moreover, computational resources must
be carefully managed to avoid hitting power and thermal
limits, while respecting Service Lever Agreements (SLAs).
This situation leads to an increased need of pushing as much
of the system management as possible into computing sys-
tems themselves, making autonomic computing a possible
breakthrough for IT success [3].

Respecting SLAs employing the least amount of resources
is one of the goals of Autonomic Computing [3]. Such sys-
tems are required to monitor themselves and the environ-
ment, detect significant changes, decide a chain of actions,
and actuate them [4]. The activity of gathering runtime in-
formation (referred to as either observe or monitor phase)
is crucial, and the availability of accurate and appropriate
status information can determine the efficacy of the system.

This paper focuses on this phase, presenting an active
monitoring [5] infrastructure to observe applications’ through-
put: the Heart Rate Monitor (HRM). HRM is designed to be
versatile and provide rich information accounting for sim-
plicity, usability, and functionality. HRM has been success-
fully employed as a building block in a previous work: the
Metronome [6] framework, demonstrating its utility in gath-
ering relevant runtime information used to provide perfor-
mance-awareness in an experimental autonomic operating
system. The present paper shifts the focus from the actua-
tion phase to the observation phase and on HRM, providing
more details regarding its design principles and implementa-
tion, describing novel features which were missing in early
revisions of HRM.

2. DESIGN AND IMPLEMENTATION
Throughput is one of the most used metrics for character-
izing applications’ performance. For instance, the perfor-
mance of a web server can be characterized in terms of re-
quests served within each time unit (i.e. requests

second ) while a
video encoder can express its performance using the encod-
ing frame rate (i.e., frames

second ). Being able to access accu-

44



Heart Rate Monitor

Producers
P6

G1

G2

G3
Consumers

A

Heartbeats

Goals

Corrective
actions

Heart rate–Goals

P3

P1

P2

P4

P5
D

O

Fig. 1. Black box view of the Heart Rate Monitor. The
inputs are heartbeats emitted by instrumented producers, or-
ganized in groups, and goals set by the users. HRM outputs
heart rate measures to consumers, creating an ODA adapta-
tion loop.

rate and comprehensive information about the throughput of
mission-critical applications and to set meaningful perfor-
mance goals in terms of high-level well understood metrics
can enable the system to enact adaptation of resources allo-
cation in order to match SLAs. HRM is designed exactly
for this reason: it lets software developers instrument the
resource-demanding section (called the kernel, or hotspot)
of the application to emit a heartbeat per unit of work done
and provides throughput measures in terms of a heart rate [6].
Moreover, HRM allows expressing goals in terms of a min–
max heart rate window, which directly maps to an application-
specific goal.

The advantages of HRM compared to similar solutions
(e.g., Application Heartbeats [7, 8]) lie in functionality and
efficiency. HRM is functionally superior since it grants both
the user and the kernel-space the permission to access infor-
mation (supporting both the Linux kernel [9] and the FreeBSD
operating system [10]). Moreover, HRM supports any kind
of parallelization model (i.e., multi-threading and multi-proc-
essing, spawning/waiting, pooling, pipelining, etc.). In terms
of efficiency, HRM is very low-overhead thanks to its dis-
tributed and asynchronous design. In addition, HRM has
been recently extended, without sensibly increasing its over-
head, with the ability to provide heart rate measurements on
multiple windows at the same time. The availability of such
information poses a challenge for research, calling for more
intelligent adaptation policies able to understand the correct
time scale to consider and to take proactive actions to match
applications’ goals.

2.1. Black Box View
We can consider HRM as a black box implementing a pro-
ducer/consumer model similar to the one employed by the
Performance and Environment Monitoring (PEM) [11]: pro-
ducers emit heartbeats for signaling progress and consumers
access the heart rates computed by the monitor. HRM acts
as an interface, collecting heartbeats, transforming them in
throughput measurements, and making them available, re-

alizing the observation phase of the Observe, Decide, Act
(ODA) adaptation loop. Figure 1 represents this black box
view, highlighting the flow of information from producers to
consumers through, going through HRM, which enables the
realization of the ODA adaptation loop.

To provide flexibility and be useful in current and future
parallel systems, HRM must support monitoring any kind
of parallel workload (i.e., multi-threaded, multi-processed,
or any feasible mix of the two); this is attained by defining
monitoring groups (marked as Gi in Figure 1). A group is
a set of tasks cooperating for a certain activity (e.g., encod-
ing video frames) and it constitutes the atomic monitoring
entity.

Throughput measurements are computed as heart rates,
i.e., for each group, the summation of the heartbeats emit-
ted by all the producers over the elapsed time. Clearly, for
such a measurements, the considered time horizon matters:
considering the whole execution time provides a smoothed
average, while considering a shorter time span discards the
old history and allows to better highlight short-term trends.
For this reason, HRM provides both a global and a window
heart rate, allowing tuning the focus on longer or shorter-
term trends as required by the specific monitoring context.
Moreover, several measures on windows of different size
(i.e. moving averages on different horizons) can be accessed
at the same time to highlight different trends and providing
richer information to consumers.

HRM allows for a simple yet general way of setting a
desired value for the heart rate of a group through two pa-
rameters: a minimum and a maximum heart rate, defining the
desired throughput range; moreover, it is possible to tie the
goal to a specific window heart rate. For instance, dealing
with a video encoder, the minimum heart rate could be set to
the minimum frame rate to guarantee the desired QoS (e.g.,
30 frames

second ), the maximum could be set to a value over which
no sensible benefit would be achieved and the goal could be
tied to a certain time horizon according to how much buffer-
ing space is available for the encoded video.

Interaction with HRM is provided through a simple API
implemented by libhrm: instrumenting an application needs
as little as adding a couple of calls for attaching to a group
and emitting heartbeats. Consumers are provided with a
simple and powerful API, which was extended to support
the new features. Details on the API are skipped here due to
space constraints.

2.2. Under the Hood
The implementation of HRM has been partitioned between
user and kernel-space. Partitioning the implementation low-
ers the overhead due to heartbeats emission while allowing
the design of both user and kernel-space adaptation policies
(i.e., consumers). The user-space partition is essentially an
implementation of libhrm. The management logic, which
handles grouping and logging, is implemented in kernel-
space. Communication among different address spaces is

45



1.
00

x 1.
37

x

1.
53

x

1.
71

x

1.
00

x

1.
96

x

2.
85

x

3.
69

x

1.
00

x

0.
82

x

1.
00

x

1.
80

x

HRM (non-optimized)
HRM

Core i7-870 Pentium D 820

Th
ro

ug
hp

ut
 S

pe
ed

up

0x

1x

2x

3x

4x

Number of Threads
1 2 3 4

Number of Threads
1 2

Fig. 2. Throughput speedup in emitting heartbeats when
scaling the number of concurrent producers per group.

enabled through shared memory, which grants low-overhead
accesses from each side. For each group, the kernel allo-
cates memory to store the information; memory segments
are mapped in the address space of producers and user-space
consumers upon group attachment. This way, all the entities
of the group can access (with proper read/write privileges)
the information. Sharing memory among different address
spaces (and even within the same address space) is a del-
icate practice. Requiring carefully laid out data structure
to achieve high efficiency. Since the most frequent opera-
tion within a group is emitting a heartbeat, the associated
code path must be thoroughly optimized. This is done with
a mapreduce-like approach, decoupling heartbeats emission
and data computation (i.e., heart rates). Each producer re-
ceives counter within group memory to store the amount
of heartbeats generated. Heartbeats emission becomes as
quick as the increment of an atomic integer. Snapshots of the
emitted heartbeat counts for all the active windows are pe-
riodically (with tunable period, defaulting at 100ms) made
available to allow on-demand heart rates computations. This
way, heart rates are represented as floating point numbers in
user-space and integer numbers in kernel-space, where float-
ing point computation is discouraged. When a consumer
asks for the global heart rate, such measurement is computed
according to Equation 1. The window heart rate is otherwise
computed according to Equation 2.

ghrg(t) =

∑
i cnti(t)

t− t0
(1)

whrg(t) =

∑
i cnti(t)− cnti(t− tw)

t− tw
(2)

In the formulae, t indicates the current timestamp, t0 is the
time at which the group was created, cnti are the counters
associated with each of the group’s producers, and tw in-
dicates the timestamp at the beginning of the window. To
compute the window heart rates, HRM uses a circular buffer
to store, at each accounting period, a snapshot of the current
overall heartbeats count for the group and the timestamp.

This approach requires a careful implementation to avoid
pitfalls resulting in poor performance. The memory location
of each counter must be cache line-aligned to avoid false
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Fig. 3. Global and six different window heart rates of an
ad-hoc application showing different performance trends.

sharing, which would cause useless cache coherency traf-
fic [12]. Figure 2 shows the speedup on throughput that can
be achieved going scaling the number of producers emitting
heartbeats in a tight loop for the same group. The test com-
pares the optimized (final) revision with the non-optimized
(i.e., non cache-friendly) revision of HRM on different pro-
cessors. On the left side, the test is run with one to four
concurrent producers executing on a quad-core Intel Core
i7-870 processor with the Intel Hyper-Threading Technol-
ogy disabled; both the non-optimized revision and the op-
timized revision of HRM scale. However, the latter scales
almost linearly with the number of producers since it avoids
false sharing. The On the right side, the same test is run
with one to two concurrent producers executing on a dual-
core Intel Pentium D 820 processor; the optimized revision
of HRM scales almost linearly while the non-optimized revi-
sion of HRM shows a slow down when two producers emit
heartbeats together for the same group. The slow down is
due to the false sharing problem, which causes a notable
performance decrease due to the off-chip (i.e., through the
northbridge), inefficient cache coherency protocol of the In-
tel Pentium D processor.

3. SHOWCASE AND CASE STUDY
HRM has been employed within the Metronome [6] frame-
work to measure applications’ throughput, information that
is later used to adapt process scheduling. Previous work
proved the efficiency of HRM compared to the reference
implementation of Application Heartbeats [13]. This is an
incremental work extending the functionality of HRM with
multiple window heart rates, a novel feature not yet adopted
in similar contexts. Figure 3 presents a showcase of this ca-
pability: a 4-threaded microbenchmark is run to emit heart-
beats as fast as possible on a quad-core Intel Core-i7 870
processor while many workloads differing in both duration
and intensity run simultaneously. CPU-bounded workloads
are simulated through the cpuburn utility. HRM is used
with the multi-window capability to highlight performance
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(a) Unmanaged instances of x264.
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(b) Managed instances of x264; goals set at 30− 60 and 70− 100 frames
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Fig. 4. Global and window heart rates for the x264 instances scheduled by the CFS (a) and by the adaptive scheduler (b).

trends and hence workloads’ phases. In absence of addi-
tional workloads, the microbenchmark peaks at about 40 ×
106 heartbeats

s . The traces on the plot track the global heart
rate and six different moving averages of size {1, 5, 10, 15,
30, 60}s1. The execution presents six phases: initially, up to
the point marked (1), there is a light additional load which
then terminates, letting the benchmark reach its peak perfor-
mance up to point (2), when another external load is started.
At point (3) the second load terminates and the microbench-
mark goes back to its peak throughput but, at point (4), a
heavier and longer-lasting load is applied up to point (5).
It can be noticed from the plot how measurements on dif-
ferent time horizons highlight different trends: short win-
dows give a prompt feedback when changes happen; how-
ever, they tend to be noisy when the execution is regular.

3.1. Adaptive Performance-Aware Scheduling
We evaluated the enhanced revision of HRM within the Met-
ronome [6] framework. HRM monitors two 4-threaded in-
stances of the x264 application [14] encoding the Big Buck
Bunny full HD movie [15]. The test platform is a quad-core
Intel Core-i7 870 processor with the Intel Hyper-Threading
Technology disabled running a modified version of Debian
GNU/Linux [9]. The window size has been empirically set
to 5s after an experimental evaluation using the multi-window
capability of the latest revision of HRM. Figure 4 shows the
results of this experiment: since the two instances are ex-
actly the same, they have almost overlapping performance
when scheduled by the Completely Fair Scheduler (CFS),
as shown in Figure 4(a). The experiment consists in set-
ting two different high-level performance goals for the two
instances and let the adaptation policy implemented within
the Metronome framework dynamically allocate processor
time to match the performance goals. Figure 4(b) shows the
managed case: the performance goals (i.e., the red and green
shaded areas), are 30− 60 frames

second and 70− 100 frames
second and

1Note that when there is not enough data to compute a window heart
rate over its full size, the measure is still provided using the available data.

the two instances of x264 are driven towards meeting their
SLAs. The throughput of the slower application receives a
sudden speedup when the other terminates, since it is now
the only application in execution and the maximum heart
rate is considered as a soft bound on the QoS, and not as a
performance cap.

4. CONCLUSIONS
HRM proved to be a flexible, efficient, and scalable through-
put monitor and was employed for realizing adaptive com-
puting. This paper offers a detailed description of the careful
design of HRM, which allows to provide very small over-
head, and provides a showcase of a novel feature: the avail-
ability of measurements on multiple tunable moving aver-
ages. We believe that this feature could be exploited by
smarter adaptation policies able to leverage this richer sta-
tus information in order to take more effective adaptation
decisions.
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